
Commission d'avis Aéroport de Bruxelles-National

Evaluation du bruit d'immission engendré par le trafic aérien nocturne en 2003 sur base de mesures de bruit assurées en continu par des stations de mesures de bruit placées par BIAC, l'IBGE et AMINAL

Commission d'Avis relative aux nuisances sonores engendrées par le trafic aérien nocturne de l'aéroport de Bruxelles-National

TABLE DES MATIERES

- 1. INTRODUCTION
- 2. STATIONS DE MESURES RAPPORTÉES
- 3. EXPLICATION
- 4. EVOLUTION DE LA SITUATION SONORE AU COURS DE L'ANNEE 2003

Partie 1 Analyse des données de vols

- 1.1 L'utilisation des pistes
- 1.2 L'utilisation des pistes en fonction du type d'avion
- 1.3 Distribution des SID ('Standard Instrument Departure')

Partie 2 Résultats par NMT (période de nuit 23-07 h)

Partie 3 Résultats par NMT (période de nuit 23-06 h)

Partie 4 Evaluation de l'accord de principe du 16 juillet 2002

- 4.1 Evaluation du projet de normes d'immission régionales
- 4.2 Evaluation des critères du programme d'isolation

Annexe:

Distribution des SID nocturnes par mois - (source: Belgocontrol - AMS)

1. INTRODUCTION

Le présent document constitue le 'rapport annuel 2003' de la commission d'avis pour l'aéroport de Bruxelles-National.

Ce rapport contient une analyse détaillée des données d'immission nocturnes (23h à 7h, heure locale) de l'année écoulée. Ces données ont été collectées par les réseaux de sonomètres de BIAC, de l'Institut Bruxellois de Gestion de l'Environnement (IBGE-BIM) et de l'administration flamande de l'environnement (AMINAL) dans le cadre du monitoring continu du bruit généré par le trafic aérien de l'aéroport de Bruxelles-National. Ces données ont été rassemblées par une collaboration entre ces trois entités.

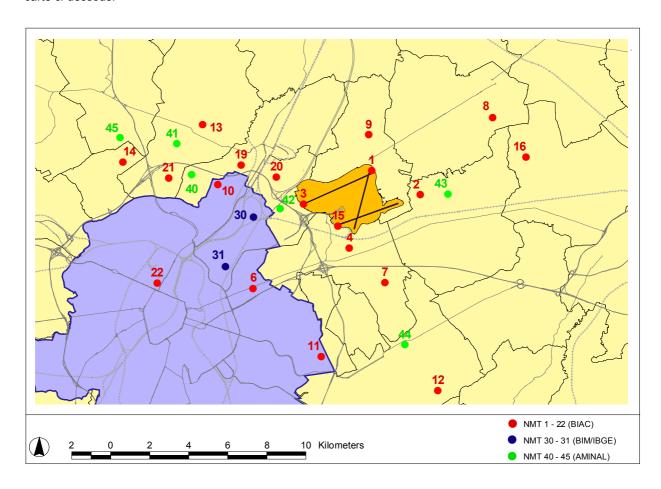
La commission d'avis pour l'aéroport de Bruxelles-National a été mise sur pied par les accords fédéraux des 22/02/2002 et 16/07/02 relatifs à une politique cohérente de gestion des nuisances sonores nocturnes. Elle est composée de représentants des administrations régionales et fédérales, de BIAC, de Belgocontrol et des compagnies aériennes. La commission d'avis se réunit sous la présidence alternée des administrations de l'environnement de la Région Flamande et de la Région de Bruxelles-Capitale.

Sa mission initiale consistait à procéder à une évaluation – pendant une année test – du cadre d'immission sonore nocturne (à la base du modèle théorique de concentration) sur base des données de mesures, c'est à dire :

- une évaluation du projet de normes d'immission régionales
- une évaluation des valeurs limites fixées dans le programme d'isolation.

En mai 2003, la commission d'avis a produit un premier rapport détaillé sur la situation sonore induite par les principes du modèle de vol concentré, pour les cinq premiers mois de l'année de test (Rapport intermédiaire de mai 2003 – Période d'observation : du 01 novembre 2002 au 31 mars 2003).

Suite aux décisions successives de disperser davantage les routes aériennes – à savoir la décision fédérale du 24 janvier 2003 et l'exécution de l'accord de gouvernement du 14 juillet 2003 avec comme conclusion l'introduction définitive le 18 mars 2004 du plan de dispersion du ministre fédéral de la Mobilité et de l'Economie sociale, M. Bert Anciaux –, il faut constater que le cadre d'immission sonore nocturne prévu n'est plus d'actualité.


Pour cette raison, la commission d'avis a étendu et généralisé ses méthodes d'analyse pour la publication du présent rapport annuel, afin de pouvoir anticiper sur les modifications des conditions annexes et des grandeurs qui sont à la base du nouveau plan de dispersion. Dans cet objectif, les résultats mentionnés dans ce rapport de l'année 2003 constituent un point de référence pour une évaluation future du « cadastre de bruit », avec la limitation que les valeurs rapportées ont uniquement trait à la période de nuit.

La Commission d'Avis relative aux nuisances sonores engendrées par le trafic aérien nocturne de l'aéroport de Bruxelles-National

Mai 2004

2. STATIONS DE MESURES RAPPORTÉES

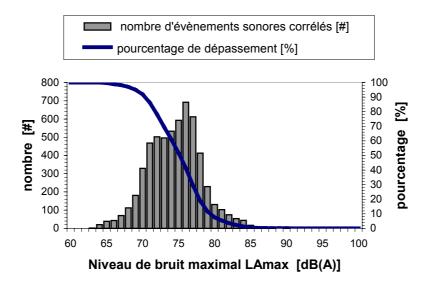
La localisation des stations de mesures (permanentes ou semi-permanentes) utilisées est représentée sur la carte ci-dessous.

Les 10 stations de mesures mobiles installées en cours d'année par l'IBGE en Région bruxelloise et la station de mesure mobile d'AMINAL installée dans la commune de Wezzembeek-Oppem (active depuis décembre 2003) ne sont par reprises.

						Coordonn	ées	Localisation: adresse			
						Lambert 7	2/50			Période d'o	bservation
NMT	LOCALISATION	Seuil	Durée minimum de dépassement [s]	Durée minimum de sous charge [s]	Déclenchement (*)	x	у		Active ? (J/N)	début	fin
BIAC											
NMT01	STEENOKKERZEEL	70	10	5	SPL/LEQ	159503	178265	Knooppunt banen 25R en 20 Airside	J	1991	
NMT02	KORTENBERG	65	10	5	SPL/LEQ	161985	176932	DVOR BUB aan de Kortenbergsesteenweg	J	1991	
NMT03	DIEGEM	70	10	5	SPL/LEQ	156022	176388	LOC-shelter einde 25R Airside	J	1991	
NMT04	NOSSEGEM	65	10	5	SPL/LEQ	158373	174167	Middle marker baan 02 achter de steenfabriek	J	1991	
NMT06	EVERE	65	10	5	SPL/LEQ	153406	172050	Leuvensteenweg 970, Buurtspoorwegen	J	1991	
NMT07	STERREBEEK	65	10	5	SPL/LEQ	160144	172294	Kerkdries 22, Vrije gesubsideerde Basisschool	J	1991	
NMT08	KAMPENHOUT	65	10	5	SPL/LEQ	165724	180956	Outer marker baan 25R aan de Paddezijpstraat	J	1991	
NMT09	PERK	65	10	5	SPL/LEQ	159375	180081	Domein van Perk N.V. Kasteel	J	1991	
NMT10	N.O-HEEMBEEK	65	10	5	SPL/LEQ	151890	177402	Bruynstraat, Militair Hospitaal	J	1991	
NMT11	ST-PWOLUWE	65	10	5	SPL/LEQ	156919	168491	Outer marker baan 02, Witte Vrouwelaan	J	1991	
NMT12	DUISBURG	65	10	5	SPL/LEQ	162902	166732	Merenstraat, Watertorens, Vlaamse Watermaatschap.	J	1991	
NMT13	GRIMBERGEN	65	10	5	SPL/LEQ	150465	180648	Rijkshoekstraat 18	J	1991	
NMT14	WEMMEL	65	10	5	SPL/LEQ	146778	178630	Zijpstraat 14-16,Hoger Rijkstechnisch Instituut voor TO	J	1991	
NMT15	ZAVENTEM	65	10	5	SPL/LEQ	157774	175307	LOC-shelter 25L Airside	J	1991	
NMT16	VELTEM	65	10	5	SPL/LEQ	167396	178908	Outermarker 25L aan de Haachtstraat	J	1991	
NMT19	VILVOORDE	65	10	5	LEQ	152849	178499	Paolapaviljoen, Domein Drie Fonteinen	J	09.01.2003	
NMT20	MACHELEN	65	10	5	LEQ	154652	177870	G. Ferréstraat 14	J	11.01.2003	
NMT21	STROMBEEK-BEVER	65	10	5	LEQ	149141	177824	Sint-Amandsplein 31	J	09.01.2003	
NMT22	BRUSSEL	65	10	5	LEQ	148543	172365	Havenlaan, Brussel	J	06.06.2003	
BIM/IBGE						45	1				
NMT30	HAREN	70	10	5	LEQ	153480	175780	Rue Cortenbach	J	01.04.1997	
NMT31	EVERE	70	10	5	LEQ	152038	173253	Rue J-B Mosselmans	J	01.01.1996	
AMINAL											
NMT40	KONINGSLO	60	10	5	LEQ	150301	178013	Streekbaan 189A (politiemeldpost)	J	05.10.2001	
NMT41	GRIMBERGEN	60	10	5	LEQ	149551	179614	Domein 'Ter Wilgen', Brusselsesteenweg	J	27.09.2002	
NMT42	DIEGEM	60	10	5	LEQ	154852	176259	Zaventemsesteenweg 40	J	29.01.2003	
NMT43	ERPS-KWERPS	60	10	5	LEQ	163416	176998	Dekenijstraat (plantsoen nabij EHBO-lokaal)	J	07.02.2003	
NMT44	TERVUREN	60	10	5	LEQ	161216	169147	Leuvensesteenweg 21 (site 'Groenplan')	J	04.04.2002	
NMT45	MEISE	60	10	5	LEQ	146634	179945	Nationale Plantentuin van België (Domein van Bouchout)	J	01.01.2003	
	1 10 0000 PIAO			17.1			Cara NINAT 4	ļ.			

^(*) depuis 1.10.2003 BIAC a changé le paramètre de déclenchement en 'LEQ' pour les stations NMT 1 à 16

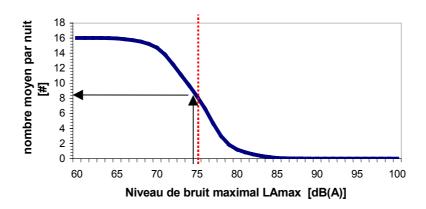
3. EXPLICATION


Les grandeurs acoustiques mentionnées ci-dessous sont déterminées sur base d'une analyse des données de mesures (corrélées aux vols) de la période de nuit (23-07h, heure locale), recueillies pendant la période d'analyse (du 31/12/2002 à 23h au 31/12/2003 à 7h). Les données de bruit ont été collectées par BIAC pour ensuite être corrélées « off-line » aux données de vols (Source : CDB 'Central Database', BIAC) de manière numérique. Cette méthode a été utilisée pour l'analyse des données 2003 en attendant que le nouveau « Noise Monitoring System » de l'aéroport soit opérationnel. Les résultats ont ensuite été traités, analysés et rapportés mensuellement par AMINAL.

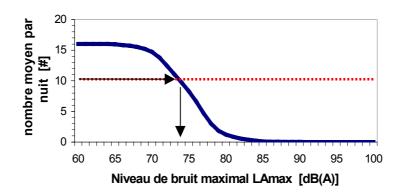
La **partie 1** de ce rapport contient une analyse des données de vols de la CDB ('Central Databse') utilisées pour la corrélation des données de bruit. Les statistiques mensuelles de l'AMS ('Automation System') de Belgocontrol sont reprises en annexe pour information.

Les **parties 2 et 3** reprennent les moyennes pour l'année d'une analyse générale des résultats par NMT (Noise Monitoring Terminal). La partie 2 est basée sur les événements sonores (corrélés aux données de vols) pendant la période de nuit allant de 23h à 7h. La partie 3 se rapporte à la nuit dite « opérationnelle » de 23h à 6h.

La base de l'analyse de la partie 2 et de la partie 3 est constituée par la distribution des fréquences des évènements sonores sur base d'un niveau de bruit maximal L_{Amax} , exprimé, après conversion le cas échéant, en valeurs $L_{Aeq,1s,max}$. Les distributions discrètes et cumulatives sont graphiquement représentées sous la forme d'histogrammes, comme illustré dans la figure ci-dessous.


Exemple d'un histogramme basé sur une distribution discrète par classe de 1 dB:

Les fréquences de dépassement $(nxL_{Amax}>=X)$ et les niveaux de dépassement (L_{Amax},nx) pour une nuit moyenne sont déduits sur base de la distribution cumulative.


Fréquence de dépassement [n_LAmax >= X]

[exemple illustratif: $X = 75 dB(A) ---> N_LAmax>=75 = 8$]

Niveau de dépassement [n_LAmax,nx >= X]

[exemple illustratif: n = 10 ---> LAmax, 10x = 74 db(A)]

L'évolution mensuelle de deux grandeurs spécifiques, les fréquences de dépassement avec comme valeur limite L_{Amax} =70 dB(A) – symbole nxL_{Amax} >70 – et le niveau équivalent (énergétique moyen) L_{Aeq} , a été indiquée en plus des valeurs moyennes annuelles, applicables pour une nuit moyenne.

La **partie 4** contient les résultats des analyses précédemment appliquées pour l'évaluation des conditions annexes de l'accord de principe du 16/07/2002 pour information.

4. EVOLUTION DE LA SITUATION SONORE AU COURS DE L'ANNEE 2003

Outre les facteurs non contrôlables tels que les conditions météorologiques ou l'utilisation des routes en fonction de la destination, les modifications des procédures de vol ont un impact sur les mesures de bruit au sol. Afin de contribuer à expliquer certaines variations dans les mesures au cours de l'année 2003, les différentes modifications intervenues dans les procédures de nuit au cours de cette année sont reprises ci-dessous.

Situation de nuit au 1^{er} janvier 2003 (de 23h à 6h)

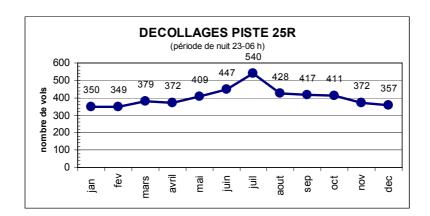
Les décollages nocturnes sont opérés préférentiellement de la piste 25R sauf pour les avions de quota de bruit inférieur à 4 en direction de la balise HUL qui décollent de la piste 20. Les décollages à partir de la piste 25R suivent des procédures de décollage optimisé (utilisation de way-points).

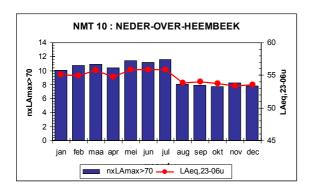
Le programme de modernisation de la flotte (remplacement par DHL des avions avec un quota de bruit QC supérieur à 12) est presque accompli. Fin du mois janvier 2003 les derniers avions 'hushkittés' type B727 sortent des tableaux des statistiques de vols. A partir de ce moment tous les avions respectent un quota individuel de bruit QC <= 12.

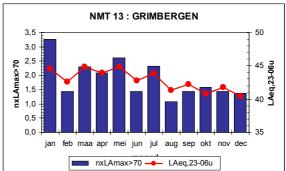
Modifications intervenues dans les procédures de nuit en 2003

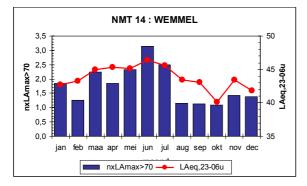
- 15 mai 2003 : mise en œuvre de la dispersion des départs de nuit au-dessus du Noordrand :
 Des procédures séparées ont été créées pour les départs en direction de la balise de NIK
 (tous les avions), de la balise COA (tous les avions), de la balise de HUL (pour les avions de
 quota de bruit supérieur à 4) et de la balise de CIV (pour les avions de quota de bruit
 supérieur à 4).
- 12 juin 2003 : mise en œuvre d'une procédure de nuit de traversée de Bruxelles pour les avions en direction de la balise de CIV (pour les avions de quota de bruit inférieur à 4).
- 22 juillet 2003 : les avions en direction de la balise de HUL utilisent préférentiellement la piste 20 pour les décollages nocturnes
- 24 juillet 2003 : recul du seuil de la piste 25R de 300 mètres pour les décollages.
- 2 octobre 2003 : modification de la route CIV-M pour suivre le trajet le plus proche du ring

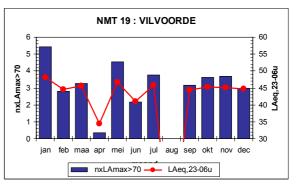
Analyse de l'évolution zone par zone (de 23h à 6h)

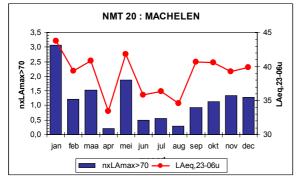

Afin de pouvoir analyser les données en fonction de l'évolution du trafic et des modifications dans les procédures intervenues en 2003, les NMT ont été répartis en différentes zones. L'attribution des NMT à une zone n'obéit pas à un critère objectif et peut-être critiquable mais est néanmoins nécessaire pour visualiser les tendances dans l'évolution de la situation sonore.

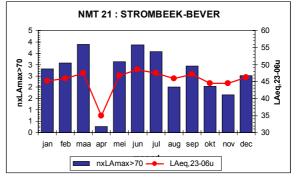

Les distributions en fréquence ou histogrammes représentent le nombre moyen par nuit d'enregistrements corrélés dépassant les 70 dB(A) en L_{Amax} (échelle de gauche). La courbe continue foncée représente le niveau de bruit équivalent moyen par nuit (entre 23h et 6h) (échelle de droite).

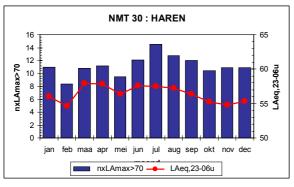

L'analyse reprends les résultats, etablis en tableaux dans la partie 3 du rapport, rélatifs à la nuit opérationnelle (23-06 h).

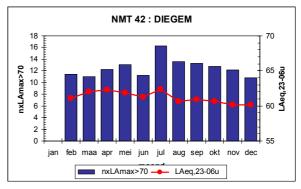

A. Zone 'Noordrand' (NMT 10, 13, 14, 19, 20, 21, 30, 40, 41, 42, 45)

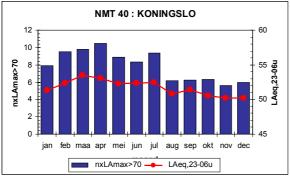

La zone définie par le Noordrand est ici définie comme la zone survolée par les avions effectuant un virage à droite après le décollage de la piste 25R. Cette définition inclut les quartiers de Haren et Neder-Over-Heembeek.

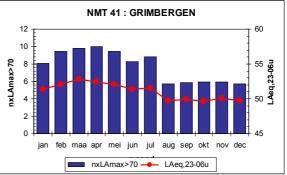


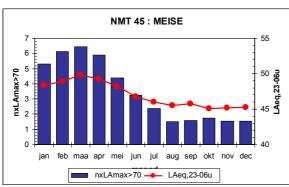


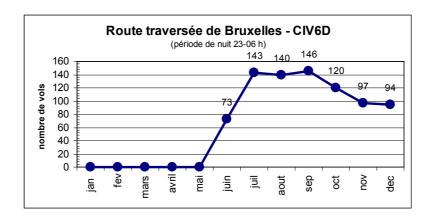


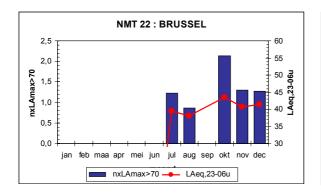


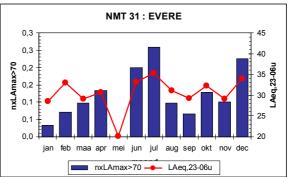


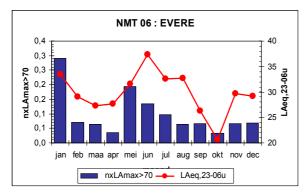




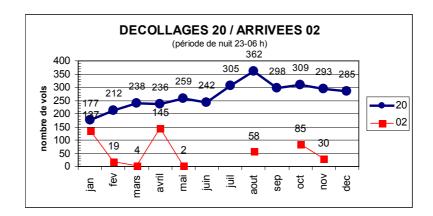


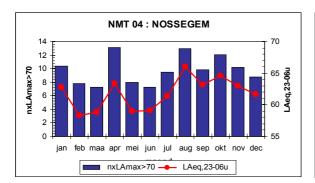


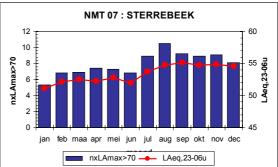

Le nombre d'événements sonores corrélés dépassant les 70 dB(A) tend généralement à diminuer pour les sonomètres dans cette zone alors que le nombre de départs de la piste 25R reste stable à l'exception du pic de l'été. Le niveau de bruit équivalent continu montre également une tendance à la baisse avec une baisse significative à partir du mois d'août pour les NMT 10 (Neder-Over-Heembeek), NMT 13 (Grimbergen), NMT 14 (Wemmel), NMT 40 (Koningslo), NMT 41 (Grimbergen) et NMT 45 (Meise). Seuls les NMT 19 (Vilvoorde) et NMT 20 (Machelen) font exception à cette tendance.

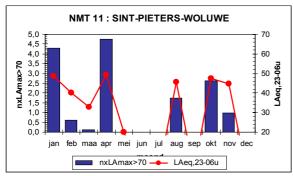

B. Zone Bruxelles-Centre en Bruxelles-Est (NMT 22, NMT 31 et NMT 6)

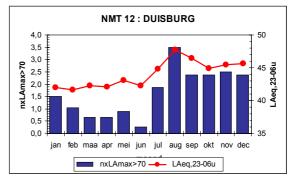
Le NMT 22 est survolé par la route de traversée de Bruxelles (CIV6D) mise en service le 12 juin 2003. Les NMT 31 et 6 sont peu survolés lorsque le système préférentiel d'utilisation des pistes est utilisé (décollage 25R et 20 / atterrissage 25R et 25L).

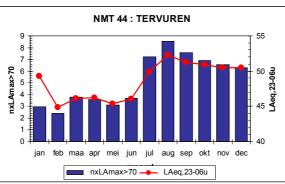


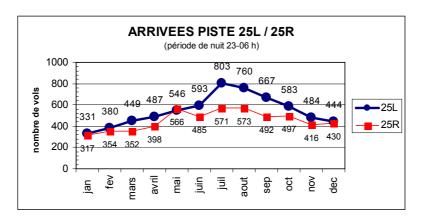


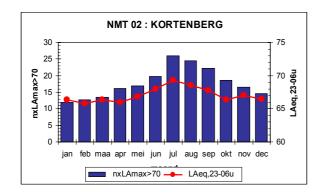

1 à 2 enregistrements par nuit corrélés dépassant les 70 dB(A) en L_{Amax} sont constatés en moyenne au NMT 22.

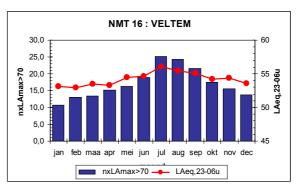

C. Zone 'Oostrand' (NMT 4, 7, 11, 44, 12)

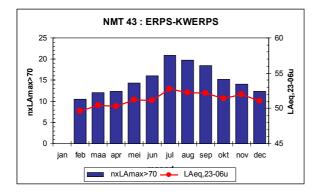

Cette zone est survolée la nuit par les départs de la piste 20 (ainsi que par les atterrissages sur la piste 02 lorsque le système préférentiel ne peut pas être utilisé).

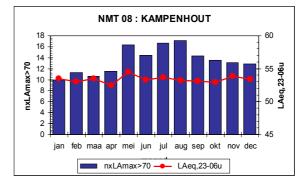


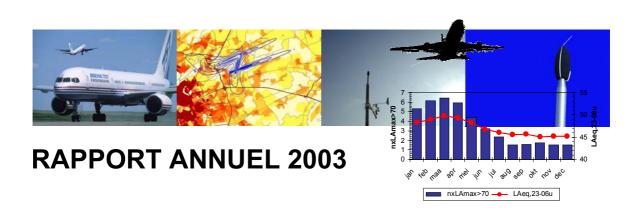



Le nombre moyen par nuit d'enregistrements corrélés dépassant les 70 dB(A) au NMT 11 (Sint-Pieters-Woluwe) correspond directement à l'utilisation de la piste 02 pour les atterrissages. Cette utilisation de la piste 02 a également un effet important sur les mesures au NMT 4.


L'utilisation de la piste 20 pour tous les décollages nocturnes en direction de la balise de Huldenberg à partir du 22 juillet 2003 se reflète dans l'augmentation du niveau équivalent continu et dans l'augmentation du nombre d'enregistrements corrélés dépassant les 70 dB(A) aux stations NMT 7 (Sterrebeek), NMT 12 (Duisburg) et NMT44 (Tervuren).


D. Zone Est de l'aéroport (NMT 2, 43, 8, 16)


La zone à l'est de l'aéroport est survolée principalement par les atterrissages sur les pistes 25R et 25L.


L'évolution du nombre moyen par nuit d'enregistrements corrélés dépassant les 70 dB(A) en LAmax et le niveau de bruit équivalent moyen par nuit (entre 23h et 6h) des NMT 2 (Kortenberg), 43 (Erps-Kwerps) et 16 (Veltem) correspondent directement aux fluctuations du nombre d'arrivées sur la piste 25L. Similairement, l'évolution des niveaux de bruit enregistrés par le NMT 8 (Kampenhout) correspond aux fluctuations du nombre d'atterrissages sur la piste 25R.

Conclusion

L'évolution du trafic par piste et par route pour l'année 2003 montre l'importance de ce facteur dans l'évolution des indicateurs de niveaux de bruit analysés. Les modifications de procédures au cours de l'année 2003 se reflètent aux différents points de mesure avec :

- une diminution du nombre moyen par nuit d'enregistrements corrélés dépassant les 70 dB(A) en L_{Amax} et du niveau de bruit équivalent moyen par nuit (entre 23h et 6h) dans la zone survolée par les avions effectuant un virage à droite après le décollage de la piste 25R.
- une **augmentation** du nombre moyen par nuit d'enregistrements corrélés dépassant les 70 dB(A) en L_{Amax} et du niveau de bruit équivalent moyen par nuit (entre 23h et 6h) dans la zone survolée **par les avions décollant de la piste 20.**

Partie 1 : Analyse des données de vols

PERIODE DE NUIT 23-06 h

ANNEE	MOIS
2003	janvier
2003	février
2003	mars
2003	avril
2003	mai
2003	juin
2003	juillet
2003	aôut
2003	septembre
2003	octobre
2003	novembre
2003	décembre
TOTAL	ANNUEL

		DECOL	LAGES				Α	TTERR	ISSAGE	S		TOTAL
25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	
350		177	30	22	45	317	331	37	137			1446
349		212	7	7	6	354	380		19	1		1335
379		238	1	3		352	449	30	4			1456
372		236	10	11	27	398	487	2	145			1688
409		259				566	546	1	2			1783
447		242				485	593			1	1	1769
540		305				571	803	1				2220
428		362		29	13	573	760	1	58			2224
417		298				492	667				2	1876
411		309	10	39	18	497	583	1	85			1953
372		293	1	12	1	416	484	2	30	1		1612
357		285				430	444	8				1524
4831	0	3216	59	123	110	5451	6527	83	480	3	3	20886
23,1%	0,0%	15,4%	0,3%	0,6%	0,5%	26,1%	31,3%	0,4%	2,3%	0,0%	0,0%	100,0%

PERIODE DE NUIT 23-07 h

ANNEE	MOIS
2003	janvier
2003	février
2003	mars
2003	avril
2003	mai
2003	juin
2003	juillet
2003	aôut
2003	septembre
2003	octobre
2003	novembre
2003	décembre
TOTAL	ANNUEL

		DECOL	LAGES				Α	TTERR	ISSAGE	S		TOTAL
25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	
500		178	32	24	62	338	401	43	150			1728
485		213	8	7	8	374	449		22	1		1567
589		255	1	3		384	544	30	5			1811
670		239	14	12	62	434	549	4	154			2138
874		269				608	613	1	2			2367
896		248				523	659			1	1	2328
1051	1	307				616	882	1				2858
926	1	362		30	30	601	823	1	63			2837
866		298				526	730				2	2422
779		309	14	40	46	528	646	1	95			2458
656		293	2	12	9	454	551	2	36	1		2016
598		290	2		3	462	506	11	2			1874
8890	2	3261	73	128	220	5848	7353	94	529	3	3	26404
33,7%	0,0%	12,4%	0,3%	0,5%	0,8%	22,1%	27,8%	0,4%	2,0%	0,0%	0,0%	100,0%

PERIODE DE NUIT 23-07h

type			DECOL	LAGES					ATTERRI	SSAGES			TOTAL
ICAO	25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	
100	1			4			1	4		4			2
146 14F	2		3	1			1	4 3		1			9 6
310	4		Ü				4	1	1				10
32S	91		23		1	4	41	91	8	16			275
707			•				1		_				1
757 ?	6 3		2 1			1	5 12	6 6	1	1	1		22 23
: A124	1		'				12	O			'		1
A306	110		106		3	3	39	142		7			410
A30B	1942		359	13	31	32	1424	839	18	91			4749
A310	16		3	1	1	2	35	10	1	2			67
A319 A320	120 870		12 71	1	2	2 33	38 233	144 661	1 1	5 31			323 1903
A321	173		14	1	_	5	14	152	·	4			363
A330	1						16	172	2	8			199
A333							35	494	2	15			546
A343 A748	1						1	1					2 1
AB3	1						· '						1
AN12					1		2	2					5
AN24							1						1
ANF ARJ	1 7		3			1	9	14		2			1 36
AS65	1		3			1	1	14		2			2
AT43							1						1
ATP	1						1						2
B190	2		1				3						6
B350 B461			2	1			1	1					4 1
B462	6			į			4	1					11
B463	2		1					2					5
B703							1						1
B721	1			0	2	0	00	00	_	44			1
B722 B732	54		2	2	2	2	60 46	88 2	3 1	11 3			222 54
B733	705		27	5	2	22	366	397	2	28			1554
B734	1286	2	114	6	1	30	427	740	1	40			2647
B735	22		14	1		4	12	42		7			102
B736 B737	4 396		44 25	8	5	1 16	3 121	30 188	9	1 37			83 805
B738	235		26	O	3	9	47	214	3	9			540
B742	10		1			1	11	4					27
B743	1						1						2
B744 B747	5 6				1 1		138 53	1 33	1	4 4			149 98
B752	1166		2015	12	55	30	1382	2061	22	127			6870
B753	1									1			2
B762	44		6			3	16	4	_	1			74
B763 B767	19 16		1 1				57 14	305 97	3	13 7			398 138
BE1	10		'				1	1	3	,			2
BE20	7		3		1		10	2		2			25
BE33	1												1
BE40	1 1		1				1						2
BE58 BE99	1						1 1						2 2
BE9L			1				1						2
BEC	1		1				4						6
BN2P	1		,				0.7			•			1
C130 C160	17 1		1				37 1	4		2			61 2
C100	2						'						2
C182	3						2		1		1		7
C25A	4		3				3	1					11
C30J							1						1
C404 C414	1		1				1 3						1 5
C421			2				ľ						2
C425			2				2	1					5
C441	_		1				1	_		_			2
C500 C525	6 2		9 5				9 5	3 1		1			28 13
C525 C550	5		7				8	2					22
	!	ı l	-			I		_	1		l .	l .	

PERIODE DE NUIT 23-07h

type			DECOL	LAGES					ATTERRI	SSAGES			TOTAL
ICAO	25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	
C551	-		-				1						1
C560 C56X	3		2				3 5	2 3		1 1			11
C650	10 3		1 2				2	3 1		1			20 8
C750	3		2				3	2					5
CCJ	1			1			1	_					3
CL60	2		6				7	2					17
CN35								1					1
CNA	1						2						3
CNJ	12		8	1		1	11	8	1				42
CRJ	12					1		4	1	2			20
CRJ1	70		1			3		5					79
CRJ2	4		2					8					10
CRJ7 CVF	1 57		11	2		2	61	2 5	2	3			3 143
CVLT	165		53	1	2	2	209	11		6			447
D10	2		00	•	-		3	2		Ü			7
D1F							2	2					4
D228	2						1	2					5
D38						1							1
D8F	7				1		11						19
DC10	2		1				5	1					9
DC86	2		1		,	_	2	20		1			6
DC87 DFL	100 11		2	1	1 2	1 2	181 8	39 4	1	4			329 31
DH8	1		3	'	4	_	U	7					1
DH8D	1							1	1				3
E120	1		1				4	•					6
E121							3	2					5
E135	3		1				9						13
E145	43		6			1	20	7					77
EM2			1				1	_	_				2
ERJ	23		2				5	6	2	-	4		38
EXPL F100	46 3		1				51 8	3 7	5	5 1	1	3	115 19
F27	3		7				3	1		'			11
F2TH	2		3				8	3					16
F406	1						3	1					5
F50	20		3	1		1	11	11		1			48
F70	246		2	8			2	6					264
F900	7		11				17	4					39
FA10	4		1				4	2					11
FA20 FA50	5 5		5 3				5 9	2					15 19
G222	3		1				1	2					2
GLEX			· ·				4	1					5
GLF2							1						1
GLF4	2		1				5						8
GLF5	1		3				4	1					9
GRJ					1		4			1			6
H25	7		F			1	10	4					1
H25B H60	7		5				10	1		1			23 1
J328	1									'			1
L101	1												1
L188	33		17		1		32	7		1			91
L410			2				1	2					5
LJ31			1					1					2
LJ35	16		19		1		27	12					75
LJ45	4		2				4	3					13
LJ55	1		1				2						4
LJ60 LOF	3		1 11				5 3	1	1				9 19
LOF	5		1				6	7	'				19
LRJ	9		1				7	5					22
M11	1						1	Ŭ					2
MD11	316		18	5	8	2	157	17		8			531
MD52	2						2	1					5
MD80	5		5			1	1	14		6			32
MD82	1		1					68		3			73
MD83	3		5					6					14
MD87	1						1	6					2
	^												
MD88 MU2	2		3				1 1	2					8 4

PERIODE DE NUIT 23-07h

type			DECOL	LAGES					ATTERR	ISSAGES			TOTAL
ICAO	25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	
P3	1												1
PA31	1						1						2
PA34	1		1				2						4
PAG	1						2						3
PAY2			2				2						4
PAY3	1						1						2
PAY4							1						1
PC12	1												1
RJ1H	112		35		1	4	12	9					173
RJ70	1		2				1	1					5
RJ85	18		2				20	18		1			59
S601	1												1
SC7	2						4						6
SH36	2						2						4
SW3			1				2	1					4
SW4	4		3				4	1					12
SWM	1		2				4	3					10
T154			4					22					26
T20			1										1
T204	58		54		3		55	19		2			191
TBM7	1												1
TU3			1					1					2
YK40							3						3
ZZZ	3		1	1			2	2					9
TOTAL	8890	2	3261	73	128	220	5848	7353	94	529	3	3	26404
	33,7%	0,0%	12,4%	0,3%	0,5%	0,8%	22,1%	27,8%	0,4%	2,0%	0,0%	0,0%	100,0%

PERIODE DE NUIT 23-06 h

DADD	type			DECOL	LAGES					ATTERR	ISSAGES			TOTAL
146		25R	25L			07L	07R	25R	25L			07L	07R	
14F	100							1						
310					1			1			1			
SZS				3										
757				10		4	2				16			
7						1								
A124										'		1		
A208 1740 357 13 31 28 1419 833 18 90 4529 50 4529 6319 63 63 63 63 63 63 63 6				-								-		
A310		105		106		3	3	36			7			
A319 93 86 99 12 11 2 1 2 3 36 143 1 5 5 1044 A320 86 99 2 6 2 6 230 620 1 30 6 1 130 1044 A321 8 12 1 1 2 1 1 152 4 4 188 A330 1 1 2 1 1 1 152 4 4 188 A330 1 1 2 1 1 1 1 152 4 1 1 5 2 280 A333 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					13		28			18				
A220 88						1								
A321 8					1	2								
A330					1	2	0			'				
A333										1				
A748														
AB3	A343	1							1					2
ANY2								1						
ANF		1							_					
ARJ 2		4						2	2					
ASS65 1 ATP 1 B190 B190				1				8	5		2			
ATP 1				•							_			
B350														
Ba61		1												
B462 6 1 2 1 9 5 B703 2 1 </td <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>				2				1	1					
B463		_			1			_	_					
B703				1				2						
B721		2		'				1						
B722		1												
B733 196 23 1 2 4 364 394 2 28 1014 1623 1735 22 13 1 4 4 12 31 1 4 6 89 8736 4 44 4 1 3 3 3 0 1 8 83 8736 4 44 4 4 1 4 3 19 8 3 4 118 184 8 36 523 309 8742 2 1 1 4 4 3 1 1 2 2 31 3 3 3 4 3 3 3 3 3 3					2	2	2	41	84	2	11			
B734 305				2				6						8
B735 22 13 1 4 12 31 6 89 83 B736 4 44 44 1 3 30 1 83														
B736						1				1				
B737 143 19 8 3 4 118 184 8 36 523 B738 17 24 1 1 46 212 9 309 B743 1 4 3 1 4 3 11 1 2 B743 1 1 57 3 6706 6706					1									
B738 17 24 1 46 212 9 309 B742 2 1 1 4 3 11 1 2 11 1 4 3 11 2 2 1 11 4 3 1 63 11 636 3 16 17 1 1 57 1 3 63 63 63 63 677 1 1 57 6706<					8	3				8				
B742 2 1 1 4 3 11 2 1 1 2 1 2 1 2 1 1 2 1 2 63 63 63 63 63 670 1					J	J								
B744 2 1 1 57 36 17 1 1 63 57 1 1 1 1 36 17 1 1 1 6706<														
B747	B743	1						1						2
B752 1091 2012 12 55 29 1313 2049 22 123 6706 B753 1 3 16 4 1 73 B763 5 1 44 82 1 3 136 B767 16 1 9 16 1 43 BE1 BE20 5 3 1 6 1 2 18 BE33 1 1 6 1 2 18 1 2 18 BE33 1 1 1 2 18 2 18 2 18 2 18 2 18 2 18 1 2 2 18 1 2 2 18 1 2 2 1 2 2 18 1 2 2 2 2 1 2 2 2 2 2 2 3 3 3														
B753 1 6 3 16 4 1 73 B762 43 6 3 16 4 1 73 B767 16 1 9 16 1 3 136 BF767 16 1 9 16 1 3 136 43 138 136 14 43 136 14 43 136 14				0040	40		00							
B762 43 6 3 16 4 1 1 73 B763 5 1 9 16 1 3 136 B767 16 1 9 16 1 43 136 BE1 1 9 16 1 1 43 136 136 136 13 136 136 13 136 136 13 136 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 136 13 13 136 13				2012	12	55	29	1313	2049	22	123			
B763 5				6			3	16	4		1			
BE1 BE20 5 3 1 6 1 2 18 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>										1				
BE20 5 3 1 6 1 2 18 BE33 1 1 6 1 2 18 BE40 1 1 2 2 2 BE58 1 1 1 2 2 BE99 1 1 1 2 2 BE90 1 1 1 2 2 BE91 1 1 3 2 5 5 5 C130 8 1 3 4 2 5 5 5 5 5 5 6 1 4 4 2 5 1 4 4 2 5 1 1 4 4 2 5 1 1 4 4 2 1 1 4 4 1 1 4 1 1 4 1 1 4 4 2 2 1 1<	B767	16		1				9	16		1			43
BE33 1 1 1 1 2 1 2 3 3 3 3 3 3 3 1 1 1 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 2 2 1														
BE40 1 1 1 2 3 3 3 3 3 3 3 3 1 1 3 3 1 1 4 4 2 5 5 5 1 1 4 2 5 5 1 1 1 4 2 5 5 1 1 1 4 2 5 5 1 1 1 4 4 2 2 5 1 1 1 4 4 2 2 5 1 1 1 4 4 2 2 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1				3		1		6	1		2			
BE58 1 BE99 1 BE9L 1 BEC 1 C130 8 1 36 C160 1 C182 2 C30J 1 C404 1 C414 1 C421 2 C441 1 C441 1 C550 3 3 7 C500 3 2 2 2 1 2 1 2 2 C500 3 9 8 3 3 1 1 2 2 2 1 2 2 2 1 2 1 2 1 3 2 4 3 5 1 6 2				1										
BE99 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 5 1 1 1 4 5 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 1 1 1 1 1 4				1				1						
BE9L 1 1 3 2 5 BEC 1 1 36 4 2 5 C130 8 1 1 2 5 C160 1 1 2 2 1 1 4 C182 2 2 1 1 4 4 1 1 4 4 1														
C130 8 1 C160 1 C182 2 C25A 3 C30J 3 C404 1 C414 1 C421 2 C425 2 C441 1 C500 3 S3 1 C555 1 C550 3 C560 2 C2 3 C560 2 C5				1										
C160 1 2 C182 2 1 1 4 C25A 3 3 1 10 1 C30J 1 1 1 1 1 1 C404 1 1 3 4 4 4 4 4 4 4 4 4 4 2 2 1 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1<														
C182 2 1 1 4 C25A 3 1 10 1 C30J 1 1 1 1 C404 1 1 4 1 C414 1 3 4 4 C421 2 2 2 1 2 C425 2 2 1 2 5 C441 1 1 2 2 1 2 C500 3 9 8 3 1 24 C525 1 4 5 1 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 12 14 13 12 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14				1					4		2			
C25A 3 3 1 10 C30J 1 1 1 1 C404 1 1 3 4 4 C421 2 2 2 2 2 2 2 2 2 2 2 2 5 5 1 2 2 2 4 3 1 24 24 24 2 2 1 1 24 24 24 2 2 1		1								_		4		
C30J 1 2 2 2 2 2 1 2 2 2 2 1 2 1		2		2					1	1		1		
C404 1 1 3 1 4 C414 2 2 2 2 1 2 C425 2 2 1 5 5 C441 1 2 2 1 2 C500 3 9 8 3 1 24 C525 1 4 5 1 11 C550 3 7 7 2 19 C560 2 2 3 2 1 10 C650 2 2 2 1 1 6 C750 3 2 5 5		J		J					'					
C414 1 3 4 C421 2 2 1 C425 2 2 1 C441 1 1 2 C500 3 9 8 3 1 C525 1 4 5 1 C550 3 7 7 2 19 C560 2 2 3 2 1 10 C56X 1 1 4 3 1 10 C650 2 2 2 1 1 6 C750 3 2 5 5														
C425 2 2 1 5 C441 1 1 1 2 C500 3 9 8 3 1 24 C525 1 4 5 1 11 11 C550 3 7 7 2 19 C560 2 2 3 2 1 10 C56X 1 1 4 3 1 10 C650 2 2 2 1 1 6 C750 3 2 5 5				1										
C441 1 1 2 C500 3 9 8 3 1 24 C525 1 4 5 1 11 11 C550 3 7 7 2 19 19 C560 2 2 3 2 1 10 C56X 1 1 4 3 1 10 C650 2 2 1 1 6 C750 3 2 5														
C500 3 9 C525 1 4 C550 3 7 C560 2 2 C56X 1 1 C650 2 2 C650 2 2 C750 1 1 C750									1					
C525 1 4 5 1 11 C550 3 7 7 2 19 C560 2 2 3 2 1 10 C56X 1 1 4 3 1 10 C650 2 2 2 1 1 6 C750 3 2 5		2							2		4			
C550 3 7 2 19 C560 2 2 3 2 1 10 C56X 1 1 4 3 1 10 C650 2 2 1 1 6 C750 3 2 5											1			
C560 2 2 C56X 1 1 C650 2 2 C750 1 1 1 1 1 1 1 1 2 5														
C56X 1 1 4 3 1 10 C650 2 2 1 1 6 C750 3 2 5											1			
C650 2 2 1 1 6 5 C750 3 2 5 5														
	C650	2		2					1					6
CCJ								3	2					
	CCJ	1			1									2

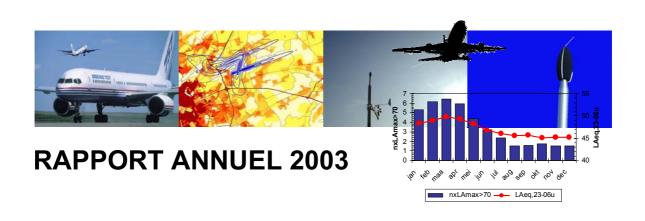
PERIODE DE NUIT 23-06 h

type			DECOL	LAGES					ATTERR	ISSAGES			TOTAL
ICAO	25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	TOTAL
CL60	1		6				3	2					12
CN35	1						1	1					1
CNA CNJ	1 10		8	1			1 9	8	1				2 37
CRJ	3							4	1	2			10
CRJ1	1		1					5					7
CRJ2			2					8					10
CRJ7 CVF	1 55		11	2		2	61	2 5	2	3			3 141
CVLT	161		53	1	2	2	209	11		6			443
D10	2			-	_			2					4
D1F								2					2
D228	2						1	2					5
D38 D8F	5				1	1	11						1 17
DC10	1		1				1	1					4
DC86			1							1			2
DC87	13		1				165	38	1	4			222
DFL	5		3	1	2	2	7	4	4				24
DH8D E120	1 1		1				4	1	1				3 6
E121	,						3	2					5
E135	1		1				9						11
E145	14		5				19	7					45
EM2 ERJ	4		1 2				1 5	6	2				2 19
EXPL	43		1				48	2	4	5	1	3	107
F100	3		-				8	7		1			19
F27			7				3	1					11
F2TH	2		3				6	3					14
F406 F50	2		2				1 11	1 11		1			2 27
F70	4		1				1	2					8
F900	2		11				14	4					31
FA10			1				3	2					6
FA20 FA50	3 1		5 3				5 6	2					13 12
G222	'		1				1						2
GLEX			-				1	1					2
GLF2							1						1
GLF4	2		1				5						8
GLF5 GRJ	1		3		1		3 1	1		1			8
H25					'	1	· '			'			1
H25B	7		5				10	1					23
J328	1												1
L101	1		17		4		22	7		4			1
L188 L410	31		17 2		1		32 1	7 2		1			89 5
LJ31			1				· .	1					2
LJ35	4		19		1		23	10					57
LJ45	3		2				4	3					12
LJ55 LJ60			1 1				2 5						3 6
LOF	3		11				3	1	1				19
LOH	4		1				6	6					17
LRJ	6		1				7	5					19
M11	1		10	_	7	_	1	4.5		7			2
MD11 MD52	303 1		18	5	7	2	141 2	15 1		7			498 4
MD80	1		1				1	14		6			23
MD82	1		1					68		3			73
MD83	3		5					5					13
MD87 MD88	1 2		3				1 1	1					2 7
MU2	3		3				1	'					4
P3	1						· .						1
PA31	1						1						2
PA34	1		1				2						4
PAG PAY2	1		2				2 2						3 4
PC12	1												1
RJ1H	66		35		1	3	10	8					123
RJ70	1		2				1	1					5

PERIODE DE NUIT 23-06 h

type			DECOL	LAGES					ATTERR	ISSAGES			TOTAL
ICAO	25R	25L	20	02	07L	07R	25R	25L	20	02	07L	07R	1
RJ85	3		2				19	18		1			43
S601	1												1
SC7	2						4						6
SH36	2						2						4
SW3			1				2	1					4
SW4	4		3				4	1					12
SWM	1		2				4	1					8
T154			4					1					5
T20			1										1
T204	44		54		3		54	19		2			176
TBM7	1												1
TU3			1					1					2
YK40							1						1
ZZZ	1			1			2	2					6
TOTAL	4831	0	3216	59	123	110	5451	6527	83	480	3	3	20886
	23,1%	0,0%	15,4%	0,3%	0,6%	0,5%	26,1%	31,3%	0,4%	2,3%	0,0%	0,0%	100,0%

PERIODE DE NUIT 23-06 h


PERIODE DE NUIT 23-07 h

SID			DECC	LACEC			TOTAL
טוט	25R	25L	DECOL 20	LAGES 02	07L	07R	TOTAL
?	53		5		1	• • • • • • • • • • • • • • • • • • • •	59
BUL1H					8	8	16
BUL1K						49	49
BUL1L			433				433
BUL1M	470		3				3
BUL1N	476			1			477
BUL1Z	3 1						3 1
BUL2C BUL2M	326						326
BUL2M BUL2Z	2						
CIV1G	2			7			2 7
CIV1G				,		25	25
CIV1N	267					20	267
CIV2M	178						178
CIV3H					26	4	30
CIV3M	115				-		115
CIV4L			418	1			419
CIV6C	9						9
CIV6D	813						813
CIV7C	21						21
COA1F				1			1
COA1H					26	5	31
COA1Z	4						4
COA4C	8						8
COA4D	1093						1093
ETE1H					29	2	31
ETE1L	1		1144				1145
ETE1M	3						3
ETE2M	10						10
GIL1N	34						34
GIL2M	21						21
HEL1C	2						2
HEL1H					1		1
KOK1F				1			1
KOK1P	1						1
LNO1H			-10		14		14
LNO2L			716				716
LNO3G	1			40			1
NIK1G				46		_	46
NIK1K NIK1N	950			2	1	5	5
NIK1N NIK1Z	850 1			2	'		853 1
NIK2M	518						518
NIK2Z	1						1
NUL1K	l '					11	11
ONT4C	1						1
RIT1L	· ·		50				50
RIT1M	5						5
SOP1C	1						1
SOP1L			159				159
SOP1M	8						8
SPI1H					9		9
SPI1L			285				285
SPI1M	2						2
TOL1C	2						2
TOL1H					8	1	9
TOL1L			3				3
TOTAL							
TOTAL	4831	0	3216	59	123	110	8339
	57,9%	0,0%	38,6%	0,7%	1,5%	1,3%	100,0%

SID	DECOLLAGES								
	25R	25L	20	02	07L	07R			
ATTERRISSA	74		5		1	1	81		
BUL1D BUL1H	5				8	17	5 25		
BUL1K					0	49	49		
BUL1L			435			10	435		
BUL1M			3				3		
BUL1N	476			1			477		
BUL1Z	3						3		
BUL2C	94						94		
BUL2M BUL2Z	326 2						326 2		
BUL3C	108						108		
CIV1G				7			7		
CIV1K						25	25		
CIV1N	267					- 4	267		
CIV2J CIV2M	178					54	54 178		
CIV2W CIV3H	170				28	4	32		
CIV3M	116				20		116		
CIV4L			434	1			435		
CIV6C	677						677		
CIV6D	813						813		
CIV7C	1146	2		1			1148		
COA1F COA1H				1	26	5	1 31		
COA11	4				20	5	4		
COA4C	49						49		
COA4D	1093						1093		
DEN1C	1						1		
ETE1H			1100		32	43	75 4462		
ETE1L ETE1M	1 400		1162				1163 400		
ETE1N	90						90		
ETE2M	966						966		
GIL1N	34						34		
GIL2M	21						21		
HEL1C	261		1				262		
HEL1F HEL1H				9	1	1	9 2		
KOK1F				1	'	'	1		
KOK1P	1			•			1		
LNO1H					14		14		
LNO2L			718				718		
LNO3G	11						11		
LNO4G NIK1G	12			46			12 46		
NIK1G NIK1K				40		5	5		
NIK1N	850			2	1	3	853		
NIK1Z	1						1		
NIK2M	518						518		
NIK2Z	1					44	1		
NUL1K ONT4C	1					11	11 1		
RIT1C	35						35		
RIT1D	2						2		
RIT1L			51				51		
RIT1M	5						5		
SOP1C SOP1D	53 12						53 12		
SOP1D SOP1F	14			1			12		
SOP1H				•		2	2		
SOP1L			161				161		
SOP1M	8						8		
SPI1B	4				0		4		
SPI1H SPI1L			286		9		9 286		
SPI1M	2		200				2		
SPI2A	7						7		
SPI3A	11						11		
TOL1C	150						150		
TOL1F				4	0	3	4		
TOL1H TOL1L			5		8	3	11 5		
TUL2A	1						1		
TOTAL	8890	2	3261	73	128	220	12574		

en annexe: des statistiques mensuelles des SID's AMS Automation System (BELGOCONTROL)

Partie 2 : Résultats par NMT (période de nuit 23-07 h)

NMT 1 STEENOKKERZEEL Rapport Annuel 2003

Données	nánáral	عما
Dominees	genera	63

la période d'observation	
la période d'évaluation	
le niveau d'activité	

Corrélation des événements sonores

le nombre total des événements sonores repérés	
le nombre des événements correlés aux passages d'avion	
le niveau de corrélation	

La distribution des frequences des éverientes sonores correles (1)										Les valeurs moyennes par nu						iuit (2			
																		_	
						_													

la distribution discrète par classe de 1 dB sur base des niveaux LAmax:

nombre d'événements

distribution par classe de 5 dB
sur base des niveaux LAmax :
60-65
65-70
70-75

NMT 1 à STEENOKKERZEEL se situe sur le terrain de l'aéroport à proximité des pistes et des installations aéroportuaires. Les evénéments sonores corréles y comprennent aussi bien les bruits des avions au sol que les bruits des avions en survol (ou une combinaison des deux).

C'est la raison pour laquelle les enregistrements sonores ne sont pas considérés d'importance à l'évaluation de l'immission du bruit des mouvements spécifiques (décollages/atterrissages). En conséquence les résultats concernés ne sont pas établis dans les tableaux.

la distribution rélative par classe de 5 dB sur base des niveaux LAmax:

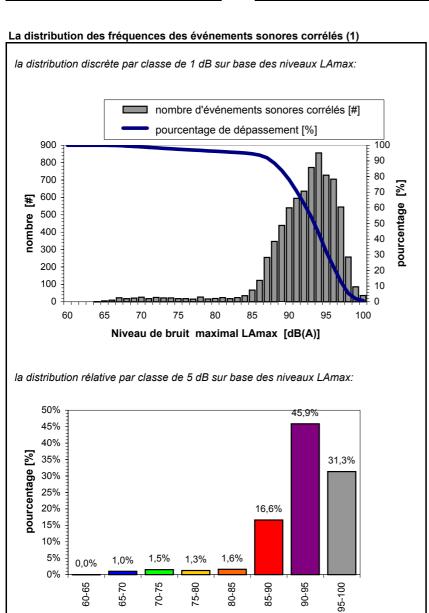
	nxLAmax>65	
(3)	nxLAmax>70	
	nxLAmax>75	
	nxLAmax>80	
	nxLAmax>85	
	nxLAmax>90	
	nxLAmax>95	
	nxLAmax>100	
	u de dépassement nax.nx)	:
(LAmax,20x	
	LAmax,10x	
	LAmax,5x	
	LAmax,4x	
	LAmax,3x	
	LAmax,2x	
	LAmax,1x	
le ni	veau équivalent (LA	eg):

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep oct nov dec nombre d'événements sonores corrélés aux passages d'avion nxLAmax>70 (3)LAeq,23-07h (Lnight) (3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

(3)


LAeq,23-07h (Lnight) NMT 2 KORTENBERG Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	99,0%

Corrélation des événements sonores

le nombre total des événements sonores repérés	9203
le nombre des événements correlés aux passages d'avion	7410
le niveau de corrélation	80,5%

Les	valeurs moyennes į	oar nuit (2)									
nom	bre d'événements	20,5									
distribution par classe de 5 dB											
sur l	sur base des niveaux LAmax :										
	60-65	n.v.t.									
	65-70	0,2									
	70-75	0,3									
	75-80	0,3									
	80-85	0,3									
	85-90	3,4									
	90-95	9,4									
	95-100	6,4									
	>= 100	0,1									
fréquence de dépassement: (nxLAmax>=X)											
	nxLAmax>60	n.v.t.									
	nxLAmax>65	20,5									
(3)	nxLAmax>70	20,3									
	nxLAmax>75	20,0									
	nxLAmax>80	19,7									
	nxLAmax>85	19,4									
	nxLAmax>90	16,0									
	nxLAmax>95	6,6									
	nxLAmax>100	0,1									
	au de dépassement max,nx)	:									
	LAmax,20x	74,2									
	LAmax,10x	93,5									
	LAmax,5x	95,7									
	LAmax,4x	96,2									
	LAmax,3x	96,8									
LAmax,2x 97,3											
	LAmax,1x	98,0									
le n	le niveau équivalent (LAeq) :										
(3)	LAeq,23-07h	67,2									

L'évolution mensuelle (2)

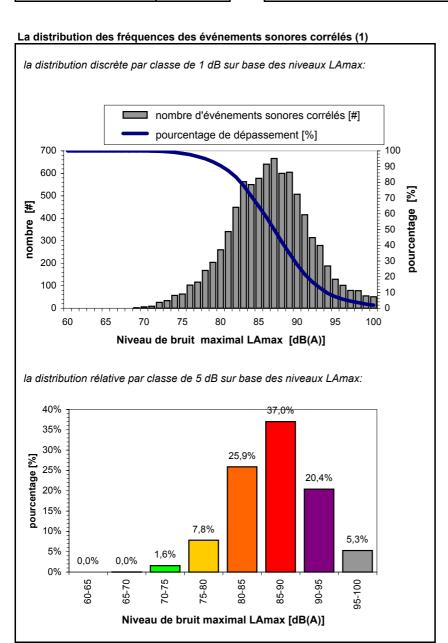
L evolution mensuene (2)												
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	454	432	497	540	598	665	899	835	741	666	561	522
nxLAmax>70	14,5	15,2	16,1	18,3	19,0	22,1	28,5	26,7	24,4	21,6	19,1	17,2
LAeq,23-07h (Lnight)	66,5	65,9	66,6	66,0	66,8	67,8	69,1	68,3	67,6	66,3	67,0	66,4

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

Niveau de bruit maximal LAmax [dB(A)]

(3) les niveaux principals à l'évaluation du 'cadastre de bruit'

(Lnight)


NMT DIEGEM Rapport Annuel

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,3%

Corrélation des événements sonores

le nombre total des événements sonores repérés	9847
le nombre des événements correlés aux passages d'avion	8353
le niveau de corrélation	84,8%

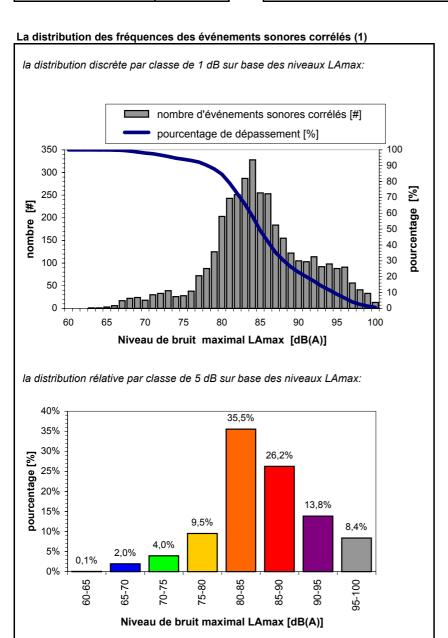
Les valeurs moyennes par nuit	i (2))
-------------------------------	-------	---

Les valeurs moyennes par nuit (2)											
nom	bre d'événements		23,3								
distribution par classe de 5 dB											
sur l	sur base des niveaux LAmax :										
	60-65		n.v.t.								
	65-70		n.v.t.								
	70-75		0,4								
	75-80		1,8								
	80-85		6,0								
	85-90		8,6								
	90-95		4,7								
	95-100		1,2								
	>= 100		0,5								
	uence de dépassem Amax>=X)	ent:									
(IIXL	nxLAmax>60		n.v.t.								
	nxLAmax>65		n.v.t.								
(3)	nxLAmax>70		23,3								
(0)	nxLAmax>75		22,9								
	nxLAmax>80		21,1								
	nxLAmax>85		15,1								
	nxLAmax>90		6,4								
	nxLAmax>95		1,7								
	nxLAmax>100		0,5								
nive	au de dépassement	:									
(LAr	nax,nx)										
	LAmax,20x		81,4								
	LAmax,10x		87,9								
	LAmax,5x		91,0								
	LAmax,4x		91,8								
	LAmax,3x		92,9								
	LAmax,2x		94,3								
	LAmax,1x		97,1								
le n	iveau équivalent (LA	(pa)									
(3)	LAeq,23-07h		66,5								
	(Lnight)										

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	445	419	496	656	841	829	1043	917	837	711	606	553
nxLAmax>70	14,4	15,0	16,2	22,6	27,1	29,2	33,6	30,2	28,1	23,4	21,0	18,2
LAeq,23-07h (Lnight)	64,9	64,2	65,6	67,0	67,1	68,3	68,1	67,1	66,8	66,1	65,4	64,4

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 4 NOSSEGEM Rapport Annuel 2003

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,7%

Corrélation des événements sonores

le nombre total des événements sonores repérés	4284
le nombre des événements correlés aux passages d'avion	3692
le niveau de corrélation	86,2%

Les valeurs moyennes par nuit (2)

Les	valeurs moyennes p	par nuit (2)							
	معدد مالخريج مسمو	40.0							
nom	bre d'événements	10,2							
dietr	ibution par classe de	5 dB							
sur base des niveaux LAmax :									
Suit	60-65	n.v.t.							
	65-70	0,2							
	70-75	0,4							
	75-80	1,0							
	80-85	3,6							
	85-90	2,7							
	90-95	1,4							
	95-100	0,9							
	>= 100	0,1							
fréqu	uence de dépasseme	ent:							
(nxL	Amax>=X)								
	nxLAmax>60	n.v.t.							
	nxLAmax>65	10,2							
(3)	nxLAmax>70	10,0							
	nxLAmax>75	9,6							
	nxLAmax>80	8,7							
	nxLAmax>85	5,0							
	nxLAmax>90	2,3							
	nxLAmax>95	0,9							
	nxLAmax>100	0,1							
nive	au de dépassement :								
	nax,nx)	•							
(27 (LAmax,20x	0,0							
	LAmax,10x	70,7							
	LAmax,5x	85,0							
	LAmax,4x	86,4							
	LAmax,3x	88,3							
	LAmax,2x	91,1							
	LAmax,1x	94,6							
		-							
le n	iveau équivalent (LA	eq):							
(3)	LAeq,23-07h	62,0							
	(Lnight)								

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep oct nombre d'événements sonores 348 239 255 401 259 226 301 407 297 380 corrélés aux passages d'avion nxLAmax>70 10,9 8,0 8,0 13,5 8,3 7,4 9,5 13,1 9,8 12,4 LAeq,23-07h (Lnight) 62,6 58,0 58,7 63,1 58,6 58,7 60,7 65,5 62,6 64,2

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

nov

306

10,4

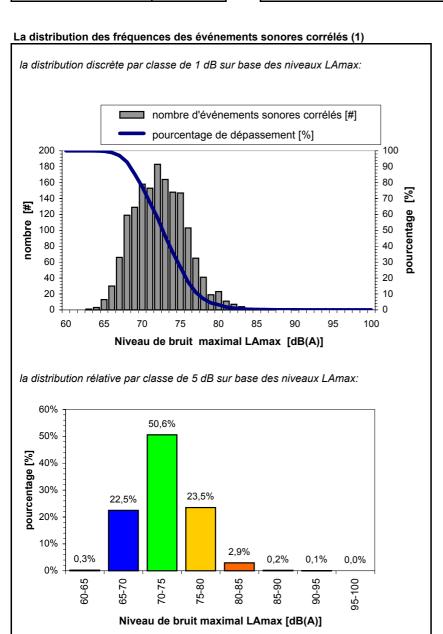
62,5

dec

273

9,0 (3)

61,2 (3)


NMT 6 E VERE Rapport Annuel

Données générales

z cinicoo gonorano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,9%

Corrélation des événements sonores

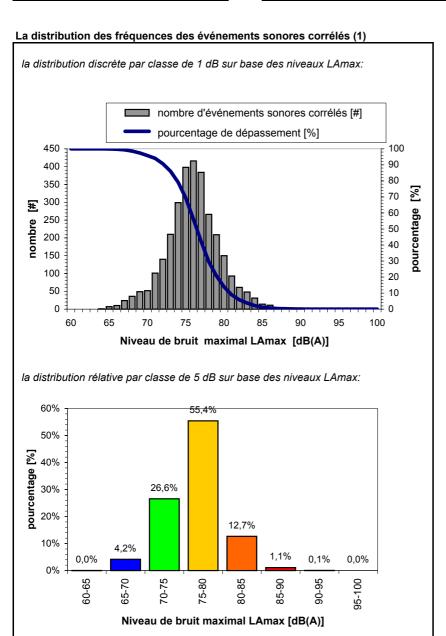
le nombre total des événements sonores repérés	2553
le nombre des événements correlés aux passages d'avion	1594
le niveau de corrélation	62,4%

Les	valeurs moyennes _l	par nuit (2)
nom	bre d'événements	4,4
diatr	ibutian nar alassa da	- E dD
	ibution par classe de	
suri	pase des niveaux LA	
	60-65	n.v.t.
	65-70 70-75	1,0
	70-75	2,2
	75-80	1,0
	80-85	0,1
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréa	uence de dépasseme	ent:
	Amax>=X)	
(nxLAmax>60	n.v.t.
	nxLAmax>65	4,4
(3)	nxLAmax>70	3,4
(0)	nxLAmax>75	1,2
	nxLAmax>80	0,1
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
	TIXEATTIAX 700	0,0
nive	au de dépassement	:
(LAr	max,nx)	
	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	0,0
	LAmax,4x	68,4
	LAmax,3x	70,9
	LAmax,2x	73,0
	LAmax,1x	75,3
le n	iveau équivalent (LA	eq):
(2)	I Ang 22 07h	AC 4
(3)	LAeq,23-07h	46,4
	(Lnight)	

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	53	40	36	121	186	196	222	230	219	148	76	67
nxLAmax>70	1,2	1,1	0,8	2,9	4,3	5,0	5,7	5,5	5,6	4,3	2,3	2,1
LAeq,23-07h (Lnight)	41,1	39,8	38,5	46,3	47,1	47,9	49,0	48,6	49,4	47,3	43,5	42,9

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 7 STERREBEEK Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,3%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3188
le nombre des événements correlés aux passages d'avion	3020
le niveau de corrélation	94,7%

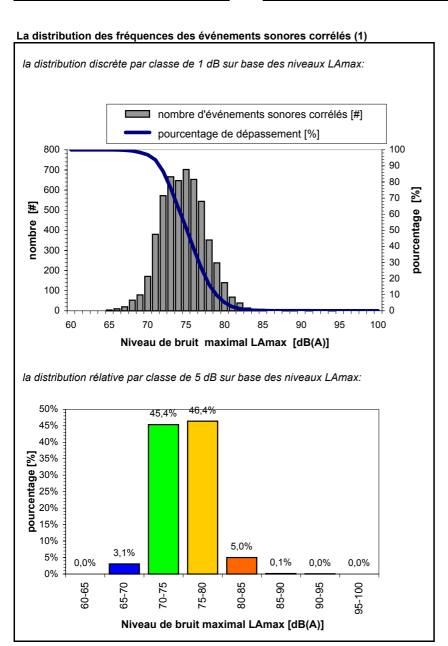
Les	va	leurs	mo	yennes	par	nuit	(2)	

Les valeurs moyennes par nuit (2)							
nom	bre d'événements	8,4					
dietri	ibution par classe de	5 dB					
	pase des niveaux LA						
Sui L	60-65	n.v.t.					
	65-70	0,4					
	70-75	2,2					
	75-80	4,7					
	80-85	1,1					
	85-90	0,1					
	90-95	0,0					
	95-100	0,0					
	>= 100	0,0					
	100	0,0					
fréai	uence de dépasseme	ent:					
	Amax>=X)						
(nxLAmax>60	n.v.t.					
	nxLAmax>65	8,4					
(3)	nxLAmax>70	8,1					
(-)	nxLAmax>75	5,8					
	nxLAmax>80	1,2					
	nxLAmax>85	0,1					
	nxLAmax>90	0,0					
	nxLAmax>95	0,0					
	nxLAmax>100	0,0					
nive	au de dépassement	:					
(LAn	nax,nx)						
	LAmax,20x	0,0					
	LAmax,10x	0,0					
	LAmax,5x	75,7					
	LAmax,4x	76,6					
	LAmax,3x	77,5					
	LAmax,2x	78,6					
	LAmax,1x	80,3					
١.							
le ni	iveau équivalent (LA	eq):					
(3)	LAeq,23-07h	53,1					
(-)	(Lnight)	23,1					
	· · · · · · · · · · · · · · · · · · ·						

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep oct nov dec nombre d'événements sonores 163 201 222 233 248 226 294 350 288 278 267 250 corrélés aux passages d'avion nxLAmax>70 5,4 6,9 7,4 7,5 7,6 7,0 8,9 10,5 9,2 8,9 9,0 8,2 (3)LAeq,23-07h (Lnight) 50,6 51,6 52,4 51,7 52,4 51,5 53,2 54,2 54,5 54,2 54,2 54,1 (3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 8 KAMPENHOUT Rapport Annuel 2003

Données générales

Dominoco gonorarco	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	5461
le nombre des événements correlés aux passages d'avion	5367
le niveau de corrélation	98,3%

	<u> </u>	,					
nom	bre d'événements	14,9					
distribution par classe de 5 dB							
sur l	oase des niveaux LAm	nax :					
	60-65	n.v.t.					
	65-70	0,5					
	70-75	6,7					
	75-80	6,9					
	80-85	0,7					
	85-90	0,0					
	90-95	0,0					
	95-100	0,0					
	>= 100	0,0					
	uence de dépassemer .Amax>=X)	nt:					
Ì	nxLAmax>60	n.v.t.					
	nxLAmax>65	14,9					
(3)	nxLAmax>70	14,4					
	nxLAmax>75	7,7					
	nxLAmax>80	0,8					
	nxLAmax>85	0,0					
	nxLAmax>90	0,0					
	nxLAmax>95	0,0					
	nxLAmax>100	0,0					
	au de dépassement : max,nx)						
 `	LAmax,20x	0,0					
	LAmax,10x	73,7					
1							

76,3

76,9

77,5

78,3

79,5

53,3

Les valeurs moyennes par nuit (2)

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70 LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
332	338	363	371	569	486	583	571	475	442	413	424
10,5	11,8	11,5	12,4	17,5	15,5	18,0	18,0	15,2	14,4	14,1	13,6
53,5	52,8	53,4	52,4	54,4	53,2	53,6	53,1	53,0	52,8	53,9	53,0

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

LAmax,5x LAmax,4x

LAmax,3x

LAmax,2x

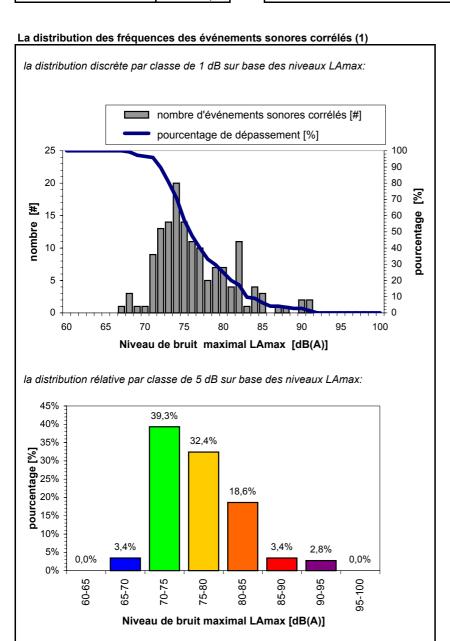
LAmax,1x

(3)

le niveau équivalent (LAeq) :

LAeq,23-07h

(Lnight)


NMT 9 PERK Rapport Annuel

Données générales

Dominoco gonorarco	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	96.2%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1227
le nombre des événements correlés aux passages d'avion	145
le niveau de corrélation	11,8%

Les valeurs moyennes par nuit (2)							
nom	bre d'événements	0,4					
ПОП	bie d'évenements	0,4					
distr	ibution par classe de	5 dB					
	pase des niveaux LA						
	60-65	n.v.t.					
	65-70	0,0					
	70-75	0,2					
	75-80	0,1					
	80-85	0,1					
	85-90	0,0					
	90-95	0,0					
	95-100	0,0					
	>= 100	0,0					
fréqu	uence de dépasseme	ent:					
(nxL	Amax>=X)						
	nxLAmax>60	n.v.t.					
	nxLAmax>65	0,4					
(3)	nxLAmax>70	0,4					
	nxLAmax>75	0,2					
	nxLAmax>80	0,1					
	nxLAmax>85	0,0					
	nxLAmax>90	0,0					
	nxLAmax>95	0,0					
	nxLAmax>100	0,0					
	au de dépassement	:					
(LAI	nax,nx)	0.0					
	LAmax,20x LAmax,10x	0,0					
	LAmax,5x						
	LAmax,4x	0,0					
	LAmax.3x	0,0					
	LAmax,2x	0,0					
	LAMax,1x						
	LAHIAN, IN	0,0					
le n	iveau équivalent (LA	eq):					
(3)	LAeg,23-07h	39,6					
(0)	(Lnight)	33,0					
	(Lingili)						

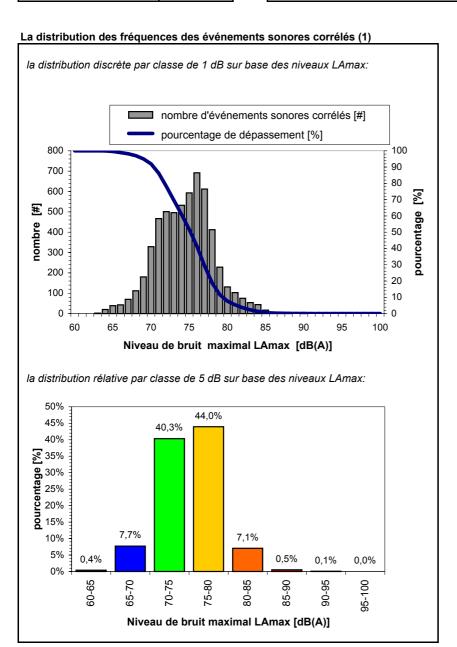
L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
68	4	28	15	1	0	4	0	0	12	3	10
2,1	0,1	0,8	0,5	0,0	0,0	0,1	0,0	0,0	0,4	0,1	0,3
46,9	31,6	38,2	44,4	19,8	0,0	35,7	0,0	0,0	41,7	33,0	34,0


- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

Données générales

z cinicoo gonorano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,8%

Corrélation des événements sonores

le nombre total des événements sonores repérés	7115
le nombre des événements correlés aux passages d'avion	5771
le niveau de corrélation	81,1%

Les valeurs moyennes par nuit (2)

Les \	valeurs moyennes p	oar nuit (2)							
nom	bre d'événements	16,0							
ПОП	bie d'éverienients	10,0							
distribution par classe de 5 dB									
sur base des niveaux LAmax :									
	60-65	n.v.t.							
	65-70	1,2							
	70-75	6,5							
	75-80	7,0							
	80-85	1,1							
	85-90	0,1							
	90-95	0,0							
	95-100	0,0							
	>= 100	0,0							
١									
	ience de dépasseme	ent:							
(nxL	Amax>=X)								
	nxLAmax>60	n.v.t.							
(0)	nxLAmax>65	15,9							
(3)	nxLAmax>70	14,7							
	nxLAmax>75	8,3							
	nxLAmax>80	1,2							
	nxLAmax>85	0,1							
	nxLAmax>90	0,0							
	nxLAmax>95	0,0							
	nxLAmax>100	0,0							
nive	au de dépassement :								
	nax,nx)								
`	LAmax,20x	0,0							
	LAmax,10x	73,8							
	LAmax,5x	76,8							
	LAmax,4x	77,3							
	LAmax,3x	77,9							
	LAmax,2x	78,8							
	LAmax,1x	80,5							
le n	veau équivalent (LA	eq) :							
(3)	LAeq,23-07h	55,4							
(0)	(Lnight)	30,4							

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep nombre d'événements sonores 430 402 493 458 612 560 627 527 471 corrélés aux passages d'avion nxLAmax>70 12,9 13,7 15,3 14,4 17,7 17,2 18,8 14,9 13,8 LAeq,23-07h (Lnight) 55,3 55,2 56,2 55,1 56,5 56,3 56,5 54,9 55,1

(1) sur base des niveaux du bruit maximal (LAm	nax) exprimés en valeurs LAeq,1s,max
--	--------------------------------------

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

(3) les niveaux principals à l'évaluation du 'cadastre de bruit'

oct

419

13,3

54,6

nov

389

12,7

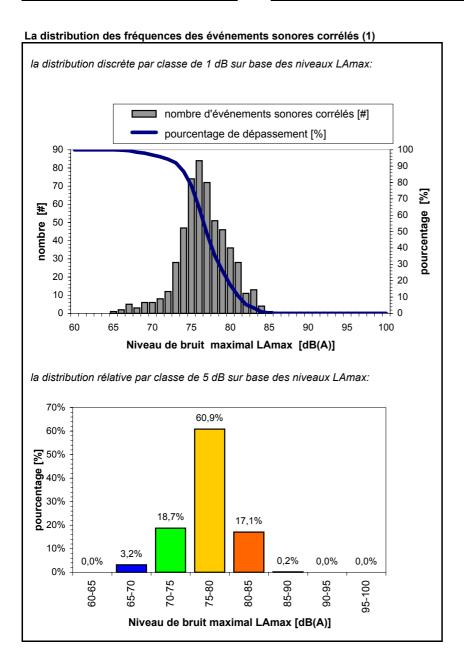
54,1

dec

383

11,6 (3)

54,2 (3)


44,0

Données générales

Dominous generales	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	99,6%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1444
le nombre des événements correlés aux passages d'avion	539
le niveau de corrélation	37,3%

Les	valeurs moyennes	par nuit (2)
nom	nbre d'événements	1,5
dist	ribution par classe de	e 5 dB
sur	base des niveaux LA	Amax :
	60-65	n.v.t
	65-70	0,0
	70-75	0,3
	75-80	0,9
	80-85	0,3
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
	uence de dépassem _Amax>=X)	ent:
	nxLAmax>60	n.v.t
	nxLAmax>65	1,5
(3)	nxLAmax>70	1,4
	nxLAmax>75	1,2
	nxLAmax>80	0,3
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	eau de dépassement	:
	max,nx)	
•	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	0,0
	LAmax,4x	0,0
	LAmax,3x	0,0
	LAmax,2x	0,0
	LAmax,1x	75,7
le r	niveau équivalent (LA	Aeq):

L'évolution mensuelle (2)

nxLAmax>70
corrélés aux passages d'avion
nombre d'événements sonores

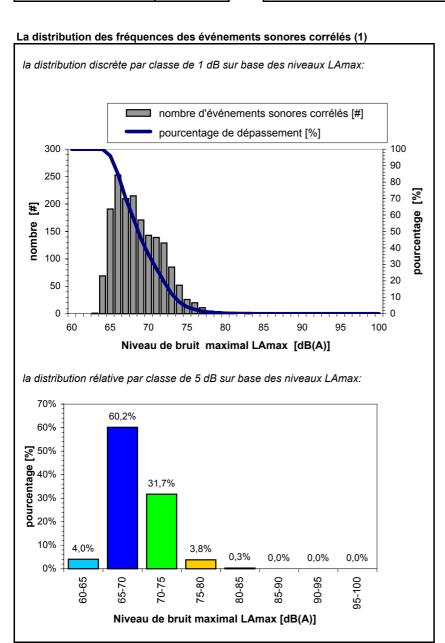
LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec	
159	28	13	149	1	0	0	60	0	92	35	2	
5,0	0,9	0,2	5,1	0,0	0,0	0,0	1,9	0,0	3,0	1,2	0,1	(3)
49,0	41,3	34,5	49,1	19,5	0,0	0,0	45,4	0,0	47,6	44,8	28,5	(3)

(3)

LAeq,23-07h (Lnight)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 12 DUISBURG Rapport Annuel

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	97,4%

Corrélation des événements sonores

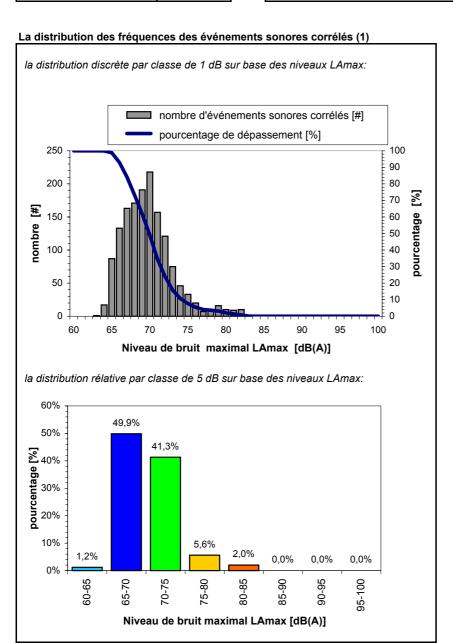
le nombre total des événements sonores repérés	2087
le nombre des événements correlés aux passages d'avion	1729
le niveau de corrélation	82,8%

Les	valeurs moyennes p	oar nuit (2)							
nom	bre d'événements	4,9							
distribution par classe de 5 dB									
sur base des niveaux LAmax :									
	60-65	n.v.t.							
	65-70	2,9							
	70-75	1,5							
	75-80	0,2							
	80-85	0,0							
	85-90	0,0							
	90-95	0,0							
	95-100	0,0							
	>= 100	0,0							
		<u> </u>							
fréa	uence de dépasseme	ent:							
	.Amax>=X)	-							
`	nxLAmax>60	n.v.t.							
	nxLAmax>65	4,7							
(3)	nxLAmax>70	1,7							
(-)	nxLAmax>75	0,2							
	nxLAmax>80	0,0							
	nxLAmax>85	0,0							
	nxLAmax>90	0,0							
	nxLAmax>95	0,0							
	nxLAmax>100	0,0							
	TIAL THUX TOO	0,0							
	au de dépassement :								
(LA	max,nx)	0.0							
	LAmax,20x	0,0							
	LAmax,10x	0,0							
	LAmax,5x	0,0							
	LAmax,4x	66,1							
	LAmax,3x	67,6							
	LAmax,2x	69,4							
	LAmax,1x	71,8							
le n	iveau équivalent (LA	eq) :							
(3)	LAeq,23-07h	44,1							
,	(Lnight)								

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec]
nombre d'événements sonores corrélés aux passages d'avion		109	153	126	164	126	183	224	194	112	110	136	
nxLAmax>70	1,5	1,1	0,9	0,6	1,0	0,4	1,9	3,5	2,4	2,4	2,5	2,7	(3
LAeq,23-07h (Lnight)	41,5	41,2	42,5	41,6	42,9	41,9	44,2	47,2	45,9	44,3	44,9	45,5	(3

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 13 GRIMBERGEN Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	99,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1670
le nombre des événements correlés aux passages d'avion	1494
le niveau de corrélation	89,5%

Les	valeurs moyennes p	oar nuit (2)
nom	bre d'événements	4,1
distr	ribution par classe de	5 dB
sur	base des niveaux LA	max :
	60-65	n.v.t.
	65-70	2,1
	70-75	1,7
	75-80	0,2
	80-85	0,1
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréa	uence de dépasseme	ent:
	.Amax>=X)	-
`	nxLAmax>60	n.v.t.
	nxLAmax>65	4,1
(3)	nxLAmax>70	2,0
` ,	nxLAmax>75	0,3
	nxLAmax>80	0,1
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	au de dépassement :	
	max,nx)	
,,	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	0,0
	LAmax,4x	65,4
	LAmax.3x	68,0
	LAmax,2x	70,0
	LAmax,1x	71,9
le n	iiveau équivalent (LA	eq):
(3)	LAeq,23-07h	42,9
(-)	(Lnight)	,-

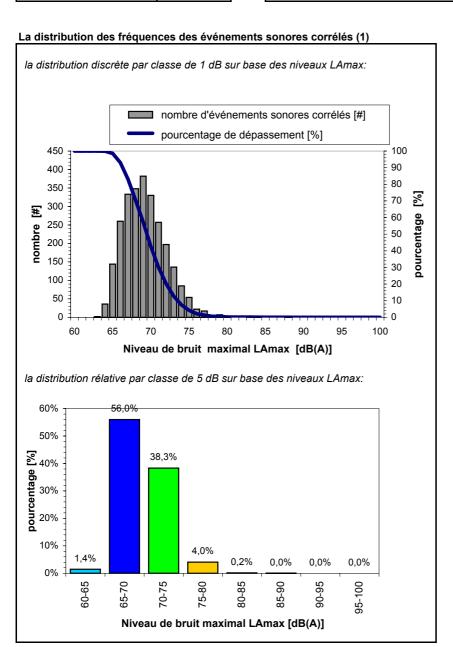
L'évolution mensuelle (2)

nombre d'événements sonores	
corrélés aux passages d'avion	1
nxLAmax>70	

LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec	
146	121	149	161	204	138	160	96	123	67	63	66	
3,5	1,7	2,5	2,5	2,9	1,5	2,3	1,1	1,5	1,6	1,5	1,5	(3)
44,3	42,7	44,5	44,3	44,7	42,5	43,4	40,8	41,9	40,4	41,4	40,1	(3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 14 WEMMEL Rapport Annuel 2003

Données générales

201111000 90110141100							
la période d'observation	2003						
la période d'évaluation	23-07h HL						
le niveau d'activité	98,9%						

Corrélation des événements sonores

le nombre total des événements sonores repérés	2740
le nombre des événements correlés aux passages d'avion	2623
le niveau de corrélation	95,7%

Les	valeurs moyennes	par nuit (2)
nom	bre d'événements	7,3
dist	ribution par classe de	e 5 dB
	base des niveaux LA	
	60-65	n.v.t.
	65-70	4,1
	70-75	2,8
	75-80	0,3
	80-85	0,0
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
-	uence de dépassem _Amax>=X)	ent:
	nxLAmax>60	n.v.t.
	nxLAmax>65	7,2
(3)	nxLAmax>70	3,1
	nxLAmax>75	0,3
	nxLAmax>80	0,0
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
	eau de dépassement max,nx)	:
	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	68,1
	LAmax,4x	69,1
	LAmax,3x	70,1
	LAmax,2x	71,1
	LAmax,1x	72,8
le r	niveau équivalent (LA	ved):

45,7

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	174	215	290	299	302	285	308	215	213	124	109	89
nxLAmax>70	3,4	3,0	4,0	3,6	4,8	4,5	3,8	1,7	1,8	2,1	2,4	1,9
LAeq,23-07h (Lnight)	44,6	45,6	46,8	47,3	47,3	47,5	46,9	44,9	45,1	42,3	44,4	42,6

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

(3)

LAeq,23-07h (Lnight) NMT 15 ZAVENTEM Rapport Annuel 2003

Données	

la période d'observation	
la période d'évaluation	
le niveau d'activité	

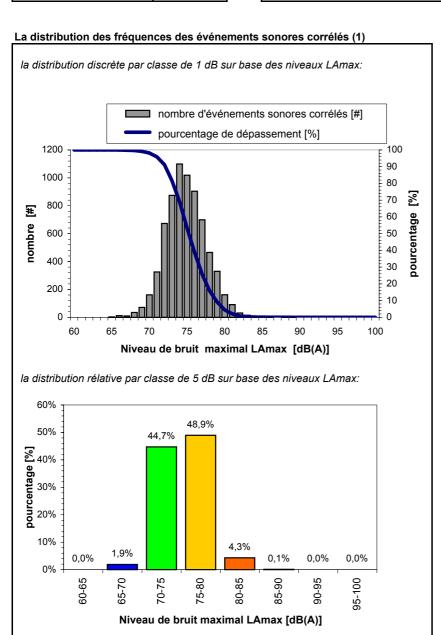
Corrélation des événements sonores

le nombre total des événements sonores repérés	
le nombre des événements correlés aux passages d'avion	
le niveau de corrélation	

distribution des fréquences des événements sonores corrélés (1)	Les valeurs moyennes par nuit (2)
distribution discrète par classe de 1 dB sur base des niveaux LAmax:	nombre d'événements
	distribution non along do E dD
	distribution par classe de 5 dB sur base des niveaux LAmax :
	60-65
	65-70
	70-75
NMT 15 à ZAVENTEM se situe sur le terrain de l'aéro	
installations aéroportuaires. Les evénéments sonores	
des avions au sol que les bruits des avions en surv	
des avions au soi que les bituits des avions en suiv	or (or the combination des deax).
C'est la raison pour laquelle les enregistrements sono	res ne sont nas considérés d'importance à
l'évaluation de l'immission du bruit des mouvements s	
conséquence les résultats concernés ne sont pas éta	
consequence les resultats concernes ne sont pas eta	ons dans les tableaux.
	TALL STREET
	nxLAmax>65
	(3) nxLAmax>70
	nxLAmax>75
	nxLAmax>80
distribution rélative per elegee de E dP eur base des nives y / Amery	nxLAmax>85 nxLAmax>90
distribution rélative par classe de 5 dB sur base des niveaux LAmax:	nxLAmax>95
	nxLAmax>100
	IIALAIIIAX 100
	niveau de dépassement :
	(LAmax,nx)
	LAmax,20x
	LAmax,10x
	I Amov Ev
	LAmax,5x
	LAmax,3x LAmax,4x
	LAmax,4x
	LAmax,4x LAmax,3x
	LAmax,4x LAmax,3x LAmax,2x
	LAmax,4x LAmax,3x LAmax,2x LAmax,1x

			r	ľ	r	ľ	ľ	п	r	r	I	r
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores												
corrélés aux passages d'avion												
nxLAmax>70												
LAeq,23-07h (Lnight)												

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 16 VELTEM Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,3%

Corrélation des événements sonores

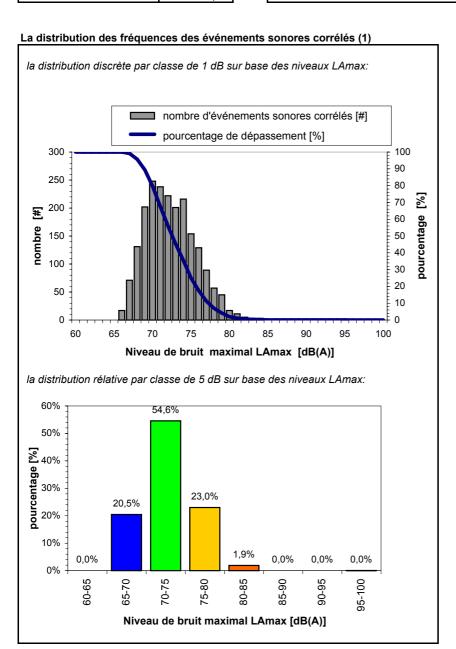
le nombre total des événements sonores repérés	7139
le nombre des événements correlés aux passages d'avion	7006
le niveau de corrélation	98,1%

Les valeurs moyennes par nuit (2)

Les	valeurs moyennes p	oar nuit (2)
nom	bre d'événements	19,5
	ibution par classe de	
sur l	pase des niveaux LA	
	60-65	n.v.t.
	65-70	0,4
	70-75	8,7
	75-80	9,6
	80-85	0,8
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréa	uence de dépasseme	ent:
	Amax>=X)	
`	nxLAmax>60	n.v.t.
	nxLAmax>65	19,5
(3)	nxLAmax>70	19,2
	nxLAmax>75	10,4
	nxLAmax>80	0,9
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nivo	au de dépassement :	
	nax,nx)	
(L/\l	LAmax,20x	0,0
	LAmax,10x	75,1
	LAmax,5x	77,0
	LAmax,4x	77,4
	LAmax,3x	78,0
	LAmax,2x	
	•	78,8
	LAmax,1x	79,7
le n	iveau équivalent (LA	eq):
(3)	LAeq,23-07h	54,4
Ĭ <i>′</i>	(Lnight)	

			1		1	1	1		1	1	1	ı
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	408	440	484	522	576	628	865	787	689	596	518	493
nxLAmax>70	12,8	15,2	15,9	17,0	18,2	20,7	27,5	26,4	23,4	19,3	17,6	15,8
LAeq,23-07h (Lnight)	53,6	53,3	53,9	53,4	54,5	54,5	56,0	55,4	55,1	54,2	54,5	53,8

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 19 VILVOORDE Rapport Annuel 2003

Données générales

Donneco generaleo	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	82,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	2264
le nombre des événements correlés aux passages d'avion	2061
le niveau de corrélation	91,0%

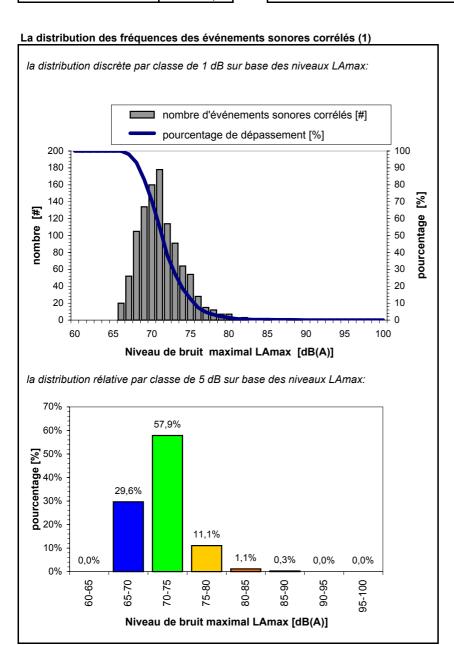
Les	valeurs moyennes	par nuit (2)
l non	nbre d'événements	6,8
IIIOII	ibre d'éverientents	0,0
dist	ribution par classe de	e 5 dB
	base des niveaux LA	
	60-65	n.v.t.
	65-70	1,4
	70-75	3,7
	75-80	1,6
	80-85	0,1
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
	uence de dépassem	ent:
(nxl	_Amax>=X)	-
	nxLAmax>60	n.v.t.
	nxLAmax>65	6,8
(3)	nxLAmax>70	5,4
	nxLAmax>75	1,7
	nxLAmax>80	0,1
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	eau de dépassement	
	max,nx)	•
(LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax.5x	70,5
	LAmax,4x	71,7
	LAmax,3x	73,0
	LAmax,2x	74,4
	LAmax,1x	76,3
1.	. ,	
le r	niveau équivalent (LA	.eq):
(3)	LAeq,23-07h	46,4
1		

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	188	173	206	16	318	27	237	0	217	233	230	216
nxLAmax>70	7,0	4,3	5,0	0,4	8,2	2,8	5,7	0,0	5,3	6,2	6,8	5,8
LAeq,23-07h (Lnight)	48,5	45,6	46,6	34,7	48,3	42,0	46,5	0,0	45,7	46,9	46,7	46,5

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

(Lnight)


NMT 20 MACHELEN Rapport Annuel

Données générales

Donnicos generales	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	93,4%

Corrélation des événements sonores

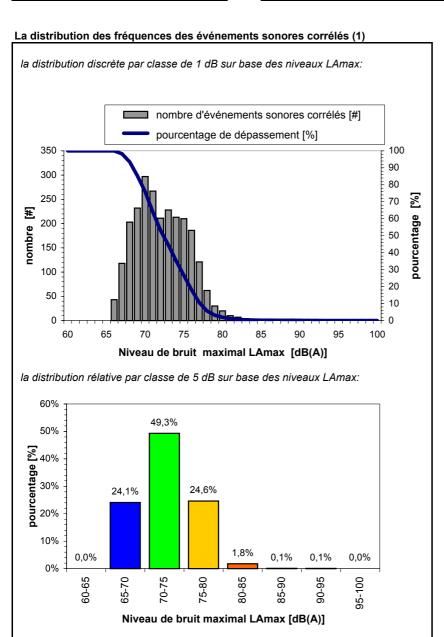
le nombre total des événements sonores repérés	1205
le nombre des événements correlés aux passages d'avion	1049
le niveau de corrélation	87.1%

Les valeurs moyennes par nuit (2)								
l .								
nom	ore d'événements	3,1						
diatri	hutian nar alassa da	E dD						
	bution par classe de ase des niveaux LA							
Sui L	60-65	n.v.t.						
	65-70	0,9						
	70-75	1,8						
	75-80	0,3						
	80-85	0,0						
	85-90	0,0						
	90-95							
	95-100	0,0						
	>= 100	0,0						
	>= 100	0,0						
frégu	ence de dépasseme	nt.						
	Amax>=X)	,,,,,						
(IIXL)	nxLAmax>60	n.v.t.						
	nxLAmax>65	3,1						
(3)	nxLAmax>70	2,2						
(0)	nxLAmax>75	0,4						
	nxLAmax>80	0,0						
	nxLAmax>85	0,0						
	nxLAmax>90	0,0						
	nxLAmax>95	0,0						
	nxLAmax>100	0,0						
	TIXES THUX- 100	0,0						
nivea	au de dépassement							
	nax,nx)							
(LAmax,20x	0,0						
	LAmax,10x	0,0						
	LAmax,5x	0,0						
	LAmax,4x	0,0						
	LAmax,3x	67,2						
	LAmax,2x	70,2						
	LAmax,1x	72,5						
	,	, , , , , , , , , , , , , , , , , , , ,						
le ni	veau équivalent (LA	eq):						
(3)	LAeq,23-07h	42,1						
ľ	(Lnight)							

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep oct nov dec nombre d'événements sonores 69 75 109 12 170 70 77 54 101 113 105 94 corrélés aux passages d'avion nxLAmax>70 4,5 1,6 2,3 0,2 3,9 1,6 1,8 1,0 1,8 2,9 3,0 2,6 (3)LAeq,23-07h (Lnight) 46,1 40,0 41,6 33,7 44,5 43,0 40,2 38,3 42,4 43,4 42,6 42,6 (3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 21 STROMBEEK-BEVER Rapport Annuel

Données générales

Dominous gonoraise	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	97,5%

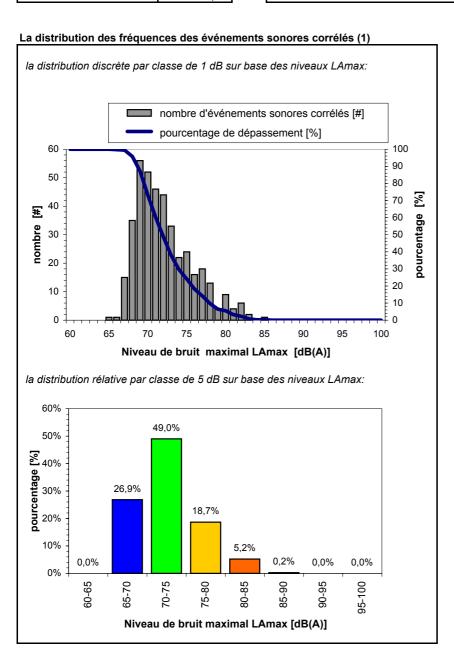
Corrélation des événements sonores

le nombre total des événements sonores repérés	2800
le nombre des événements correlés aux passages d'avion	2473
le niveau de corrélation	88,3%

Les	valeurs moyennes p	oar nuit (2)
nom	bre d'événements	6.0
HOIH	bie d'éverientents	6,9
distr	ibution par classe de	5 dB
	pase des niveaux LA	
	60-65	n.v.t.
	65-70	1,7
	70-75	3,4
	75-80	1,7
	80-85	0,1
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
	1 1/	
	uence de dépasseme	ent:
(nxL	Amax>=X)	
	nxLAmax>60	n.v.t.
(2)	nxLAmax>65	6,9
(3)	nxLAmax>70	5,3
	nxLAmax>75	1,8
	nxLAmax>80	0,1
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	au de dépassement :	
	nax,nx)	
`	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	70,3
	LAmax,4x	71,6
	LAmax,3x	73,1
	LAmax,2x	74,7
	LAmax,1x	76,4
le n	iveau équivalent (LA	eq):
(3)	LAeq,23-07h	48,3
(3)	(Lnight)	40,3
	(Liligili)	

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec]
nombre d'événements sonores corrélés aux passages d'avion	115	204	258	22	258	293	310	263	275	171	129	175	
nxLAmax>70	4,2	5,0	6,4	0,4	5,8	7,6	7,5	6,3	6,9	4,5	3,5	4,7	(3)
LAeq,23-07h (Lnight)	46,3	47,4	48,8	36,5	48,6	50,0	49,6	48,8	49,9	48,7	47,1	48,0	(3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 22 BRUSSEL Rapport Annuel

Données générales

Dominous gonerans	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	37.7%

Corrélation des événements sonores

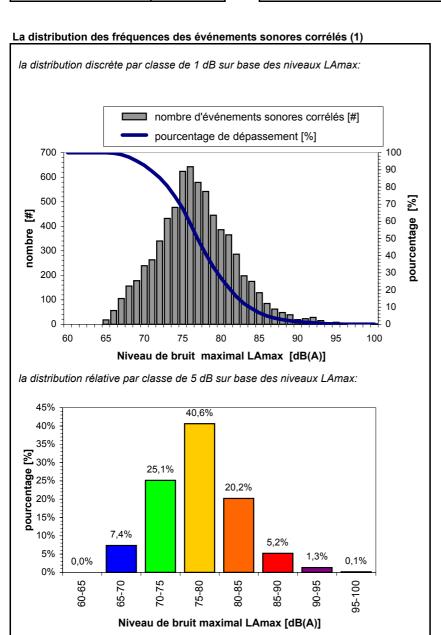
le nombre total des événements sonores repérés	1056
le nombre des événements correlés aux passages d'avion	402
le niveau de corrélation	38,1%

Les valeurs	moyenne	s par	nuit	(2)

Les	valeurs moyennes _l	par nuit (2)
	ما معروم من کی داداد	
nom	bre d'événements	2,9
dietr	ibution par classe de	5 dB
	pase des niveaux LA	
Jui	60-65	n.v.t.
	65-70	0,8
	70-75	1,4
	75-80	0,5
	80-85	0,2
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréqu	uence de dépasseme	ent:
(nxL	.Amax>=X)	
	nxLAmax>60	n.v.t.
	nxLAmax>65	2,9
(3)	nxLAmax>70	2,1
	nxLAmax>75	0,7
	nxLAmax>80	0,2
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nivo	au de dépassement	
	nax,nx)	•
(LA	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	0,0
	LAmax,4x	0,0
	LAmax,3x	0,0
	LAmax,2x	70,4
	LAmax,1x	73,4
l .		
le n	iveau équivalent (LA	eq):
(3)	LAeq,23-07h	42,2
	(Lnight)	

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	-	-	-	-	-	0	194	36	-	77	67	28
nxLAmax>70	-	-	-	-	-	0,0	4,4	3,6	-	2,1	1,6	1,3
LAeq,23-07h (Lnight)	-	-	-	-	-	0,0	44,8	43,6	-	42,9	41,3	40,8

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 30 HAREN Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	7290
le nombre des événements correlés aux passages d'avion	6979
le niveau de corrélation	95,7%

Les \	/aleurs moyennes p	ar nuit (2)
nom	bre d'événements	19,5
ما المانات	hutian nan alaasa da	C 4D
	bution par classe de	
Surt	pase des niveaux LAr	
	60-65 65-70	0,0
	70-75	1,4
	75-80	4,9
	75-60 80-85	7,9
	85-90	3,9 1,0
	90-95	0,3
	95-100	0,0
	>= 100	0,0
	>= 100	0,0
frégu	ience de dépasseme	ent.
	Amax>=X)	
(11)(2	nxLAmax>60	19,5
	nxLAmax>65	19,5
(3)	nxLAmax>70	18,1
(0)	nxLAmax>75	13,2
	nxLAmax>80	5,2
	nxLAmax>85	1,3
	nxLAmax>90	0,3
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	au de dépassement :	
	nax,nx)	
ľ	LAmax,20x	0,0
	LAmax,10x	76,8
	LAmax,5x	80,2
	LAmax,4x	81,1
	LAmax,3x	82,1
	LAmax,2x	83,6
	LAmax,1x	85,7
le n	veau équivalent (LA	eq):
(3)	LAeq,23-07h	57,8
	(Lnight)	

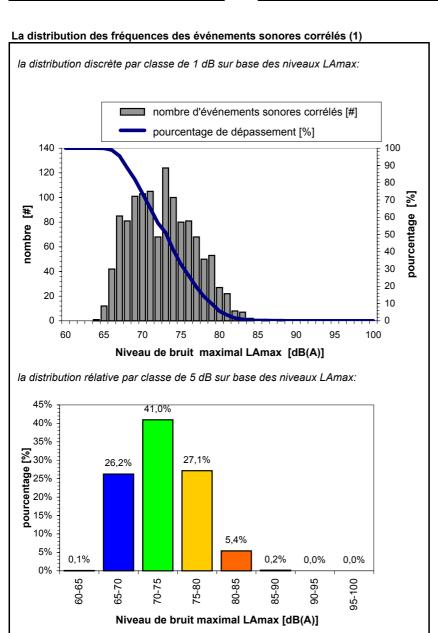
L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70 LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec	
344	310	452	550	617	709	822	834	747	590	502	502	
13,8	10,6	14,0	17,4	18,4	22,2	24,4	24,4	22,6	17,3	15,3	14,9	(3)
56,6	54,9	58,0	58,9	57,9	59,3	58,8	59,1	58,5	56,9	56,1	56,0	(3)

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 31 EVERE Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	100,0%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1266
le nombre des événements correlés aux passages d'avion	1223
le niveau de corrélation	96,6%

Les valeurs moyenn	ies par nuit (2))
--------------------	------------------	---

Les	valeurs moyennes p	oar nuit (2)
nom	bre d'événements	3,4
-1! - 4.	de	5 dD
	ribution par classe de	
Sur	base des niveaux LA	
	60-65	0,0
	65-70 70-75	0,9
	70-75	1,4
	75-80	0,9
	80-85	0,2
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréa	uence de dépasseme	ent:
	.Amax>=X)	
(nxLAmax>60	3,4
	nxLAmax>65	3,3
(3)	nxLAmax>70	2,5
(-)	nxLAmax>75	1,1
	nxLAmax>80	0,2
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
nive	au de dépassement :	
	max,nx)	
_/ \l	LAmax,20x	0,0
	LAmax,10x	0,0
	LAmax,5x	0,0
	LAmax,4x	0,0
	LAmax.3x	67,8
	LAmax,2x	71,5
	LAmax,1x	75,4
le n	iveau équivalent (LA	
.51	Jaa oqantaloin (LA	~ 7/ ·
(3)	LAeq,23-07h	46,3
	(Lnight)	

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion nxLAmax>70

LAeq,23-07h (Lnight)

25	15	24	96	142	179	174	193
		ı		ı	ı	ı	
0,6	0,4	0,4	2,2	3,5	5,0	4,0	4,6
39,8	37,8	37,5	46,8	48,1	49,3	46,9	49,4

mai

juin

jul

aout

sep

168

4,3

48,8

oct

112

2,4

46,7

nov

50

1,0

41,3

dec

45

0,9 (3)

42,9 (3)

avr

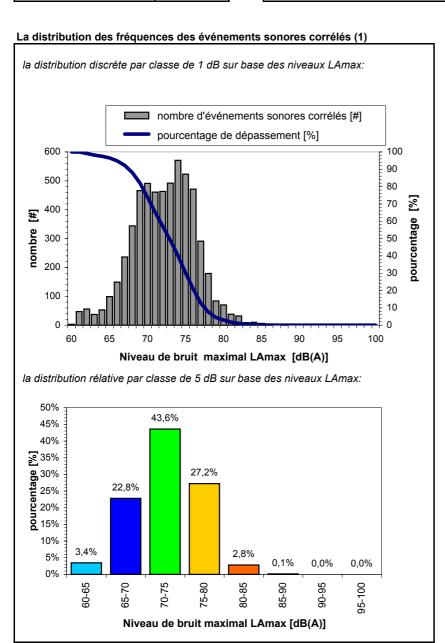
(1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

jan

fev

mar

- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 40 KONINGSLO Rapport Annuel

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	98,5%

Corrélation des événements sonores

le nombre total des événements sonores repérés	6339
le nombre des événements correlés aux passages d'avion	5689
le niveau de corrélation	89,7%

Les valeurs moyenn	ies par nuit (2))
--------------------	------------------	---

Les	valeurs moyennes	par nuit (2)
nom	bre d'événements	15,8
HOIII	bie d'éverientents	15,0
distr	ibution par classe de	- 5 dB
	base des niveaux LA	
001	60-65	0,5
	65-70	3,6
	70-75	6,9
	75-80	4,3
	80-85	0,4
	85-90	0,0
	90-95	0,0
	95-100	0,0
	>= 100	0,0
fréq	uence de dépassem	ent:
(nxL	.Amax>=X)	
	nxLAmax>60	15,8
	nxLAmax>65	15,3
(3)	nxLAmax>70	11,7
	nxLAmax>75	4,8
	nxLAmax>80	0,5
	nxLAmax>85	0,0
	nxLAmax>90	0,0
	nxLAmax>95	0,0
	nxLAmax>100	0,0
١.		
	au de dépassement	:
(LAr	max,nx)	
	LAmax,20x	0,0
	LAmax,10x	71,2
	LAmax,5x	74,8
	LAmax,4x	75,4
	LAmax,3x	76,2
	LAmax,2x LAmax,1x	77,0
	LAIIIdX, IX	78,3
le n	iveau équivalent (LA	ved):
(0)		
(3)	LAeq,23-07h	52,6
1	(Lnight)	

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep nombre d'événements sonores 409 418 454 553 560 532 615 511 474 corrélés aux passages d'avion nxLAmax>70 10,1 12,1 13,0 14,0 13,3 12,9 14,8 11,3 11,3 LAeq,23-07h (Lnight) 51,8 52,8 53,9 53,6 53,3 53,2 53,4 52,1 52,7

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

oct

394

10,0

51,7

nov

399

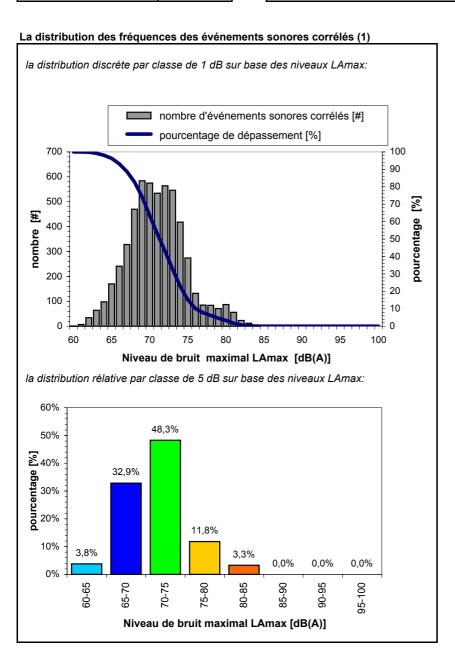
8,4

51,3

dec

370

8,7 (3)


51,0 (3) NMT 41 GRIMBERGEN Rapport Annuel 2003

Données générales

Donnices generales	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	96,7%

Corrélation des événements sonores

le nombre total des événements sonores repérés	5907
le nombre des événements correlés aux passages d'avion	5467
le niveau de corrélation	92,6%

Les	valeurs moyennes	par nuit (2)	
nom	nbre d'événements	15	5,5
	ribution par classe de		
sur	base des niveaux LA	max :	
	60-65	C),6
	65-70	5	5,1
	70-75	7	7,5
	75-80	1	1,8
	80-85	C),5
	85-90	(),0
	90-95	C),0
	95-100	(),0
	>= 100	(),0
	uence de dépassem _Amax>=X)	ent:	
l `	nxLAmax>60	15	5,5
	nxLAmax>65		1,9
(3)	nxLAmax>70	9	9,8
	nxLAmax>75	2	2,3
	nxLAmax>80	(),5
	nxLAmax>85	(),0
	nxLAmax>90	(),0
	nxLAmax>95	C),0
	nxLAmax>100	(),0
	au de dépassement max,nx)	:	
	LAmax,20x	C),0
	LAmax,10x	69	9,9
	LAmax,5x	73	3,0
	LAmax,4x		3,7
	LAmax,3x	74	1,3
	LAmax,2x		5,3
	LAmax,1x	77	7,7
le n	niveau équivalent (LA	ved) :	

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	415	422	468	508	570	526	603	451	440	371	410	283
nxLAmax>70	9,8	11,9	12,9	12,3	13,4	9,6	10,7	6,6	7,1	7,3	8,1	7,5
LAeq,23-07h (Lnight)	51,4	52,1	52,9	52,5	52,5	51,5	51,7	50,0	50,2	49,8	50,4	49,9

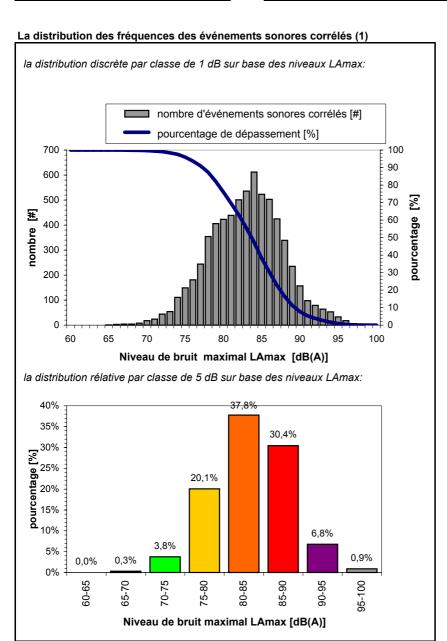
- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

(3)

LAeq,23-07h

(Lnight)

51,4


NMT 42 DIEGEM Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	82,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	6881
le nombre des événements correlés aux passages d'avion	6655
le niveau de corrélation	96,7%

nombre d'événements	22,2
distribution par classe de 5 sur base des niveaux LAma	
60-65	n.v.t.
65-70	0,1
70-75	0,8
75-80	4,5
80-85	8,4
85-90	6,8
90-95	1,5
95-100	0,2
>= 100	0.0

Les valeurs moyennes par nuit (2)

fréquence de dépassement: (nxLAmax>=X)

	nxLAmax>60	n.v.t.
	nxLAmax>65	22,2
(3)	nxLAmax>70	22,1
	nxLAmax>75	21,3
	nxLAmax>80	16,9
	nxLAmax>85	8,5
	nxLAmax>90	1,7
	nxLAmax>95	0,2
	nxLAmax>100	0,0

niveau de dépassement :

(LAmax,nx)	
LAmax,20x	77,2
LAmax,10x	84,2
LAmax,5x	87,0
LAmax,4x	87,7
LAmax,3x	88,5
LAmax,2x	89,5
LAmax,1x	91,5

le niveau équivalent (LAeq) :

(3)	LAeq,23-07h
	(Lnight)

62,7	

L'évolution mensuelle (2)

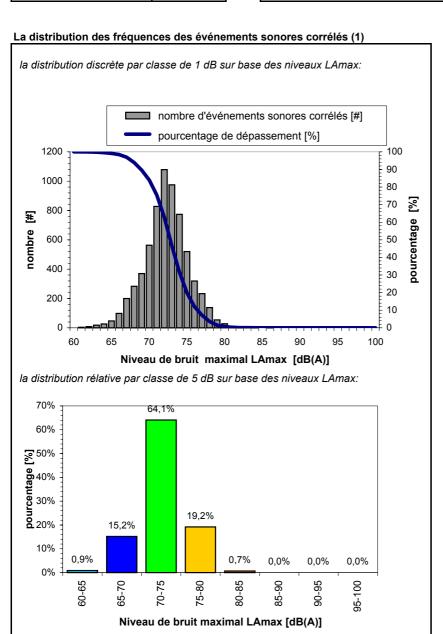
nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

LAeq,23-07h (Lnight)

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
-	424	457	649	613	336	849	878	796	655	571	427
-	15,1	15,8	21,7	25,1	20,8	31,2	28,3	26,5	22,4	19,0	16,7
-	61,6	62,4	63,2	63,3	62,6	64,1	63,0	63,1	62,3	61,5	61,0

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 43 ERPS-KWERPS Rapport Annuel 2003

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	88,3%

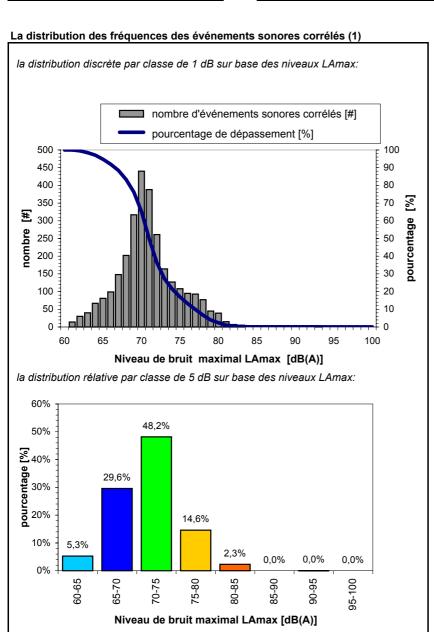
Corrélation des événements sonores

le nombre total des événements sonores repérés	7697
le nombre des événements correlés aux passages d'avion	6591
le niveau de corrélation	85,6%

Les valeurs moyennes par nuit (2)						
	h		20.5			
nom	bre d'événements		20,5			
distri	bution par classe de	5 dB				
	ase des niveaux LA					
	60-65		0,2			
	65-70		3,1			
	70-75		13,1			
	75-80		3,9			
	80-85		0,1			
	85-90		0,0			
	90-95		0,0			
	95-100		0,0			
	>= 100		0,0			
	ience de dépasseme	ent:				
(nxL	Amax>=X)	_				
	nxLAmax>60		20,5			
(0)	nxLAmax>65		20,3			
(3)	nxLAmax>70		17,2			
	nxLAmax>75		4,1			
	nxLAmax>80		0,1			
	nxLAmax>85		0,0			
	nxLAmax>90		0,0			
	nxLAmax>95 nxLAmax>100		0,0			
	nxLAmax>100		0,0			
nive	au de dépassement :	•				
	nax,nx)					
`	LAmax,20x		66,4			
	LAmax,10x		72,8			
	LAmax,5x		74,5			
	LAmax,4x		75,0			
	LAmax,3x		75,6			
	LAmax,2x		76,4			
	LAmax,1x		77,5			
le ni	veau équivalent (LA	eu).				
16 111	vodu equivalent (LA	сч <i>)</i> .				
(3)	LAeq,23-07h		51,4			
	(Lnight)					

			1	1	1	1	1	1	1	1	1	1
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	-	305	469	519	586	657	887	794	718	607	537	512
nxLAmax>70	-	12,7	14,2	13,8	16,3	17,7	23,0	21,4	20,4	17,1	16,2	14,4
LAeq,23-07h (Lnight)	-	50,0	50,8	50,2	51,2	51,0	52,6	52,0	52,1	51,4	52,0	51,1

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'


NMT 44 TERVUREN Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	92,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3081
le nombre des événements correlés aux passages d'avion	2865
le niveau de corrélation	93,0%

Les valeu	ire move	onnoe n	ar nuit	121
Les valeu	irs moy	ennes p	ar nuit	(4)

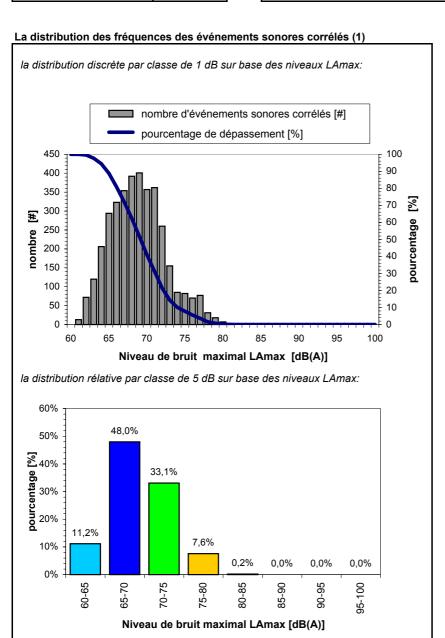
Les valeurs moyennes par nuit (2)						
nom	bre d'événements		8,5			
diatr	ibution nor alassa de					
	ibution par classe de pase des niveaux LA					
Sui	60-65	MIIAX .	0.4			
	65-70		0,4 2,5			
	70-75		4,1			
	75-80		1,2			
	80-85		0,2			
	85-90		0,0			
	90-95		0,0			
	95-100		0,0			
	>= 100		0,0			
	.00	<u> </u>	0,0			
fréa	uence de dépassem	ent:				
	Amax>=X)					
`	nxLAmax>60		8,5			
	nxLAmax>65		8,0			
(3)	nxLAmax>70		5,5			
,	nxLAmax>75		1,4			
	nxLAmax>80		0,2			
	nxLAmax>85		0,0			
	nxLAmax>90		0,0			
	nxLAmax>95		0,0			
	nxLAmax>100		0,0			
nive	au de dépassement					
	nax,nx)					
`	LAmax,20x		0,0			
	LAmax,10x		0,0			
	LAmax,5x		70,3			
	LAmax,4x		71,1			
	LAmax,3x		72,0			
	LAmax,2x		73,5			
	LAmax,1x		76,3			
le n	iveau équivalent (LA	ved):				
(3)	LAeq,23-07h		49,0			
′	(Lnight)		, :			

6,6 (3)

(3)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	127	143	170	212	82	158	355	393	322	306	303	294
nxLAmax>70	3,0	2,4	3,8	3,6	3,9	3,8	7,5	8,5	7,7	7,1	6,6	6,6
LAeq,23-07h (Lnight)	48,7	44,4	45,6	45,8	46,0	45,7	49,6	51,7	50,8	50,4	50,0	50,0

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

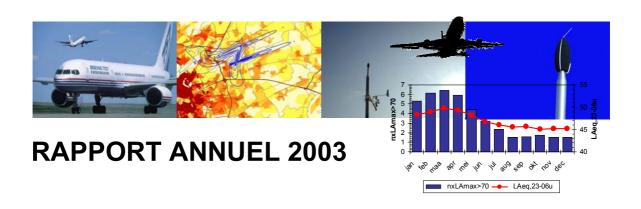

NMT 45 MEISE Rapport Annuel 2003

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-07h HL
le niveau d'activité	99,0%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3917
le nombre des événements correlés aux passages d'avion	3689
le niveau de corrélation	94,2%


Les valeurs moyennes par nuit (2)

_62 A	aleurs moyennes	pai muit (2)						
		- 10.0						
nom	bre d'événements	10,2						
	bution par classe de							
sur b	ase des niveaux LA							
	60-65	1,1						
	65-70	4,9						
	70-75	3,4						
	75-80	0,8						
	80-85	0,0						
	85-90	0,0						
	90-95	0,0						
	95-100	0,0						
	>= 100	0,0						
-	ience de dépasseme	ent:						
(nxL	Amax>=X)							
	nxLAmax>60	10,2						
	nxLAmax>65	9,1						
(3)	nxLAmax>70	4,2						
	nxLAmax>75	0,8						
	nxLAmax>80	0,0						
	nxLAmax>85	0,0						
	nxLAmax>90	0,0						
	nxLAmax>95	0,0						
	nxLAmax>100	0,0						
nive	au de dépassement							
	nax,nx)	•						
(L/AII	LAmax,20x	0,0						
	LAmax,10x	62,8						
	LAmax,5x	69,2						
	LAmax,4x	70,1						
	LAmax,3x	71,1						
	LAmax,2x	72,2						
	LAmax.1x	74,1						
	LAHAA, IA	74,1						
le ni	veau équivalent (LA	.eq):						
(3)	LAeq,23-07h	47,5						
(0)	(Lnight)	47,5						
	(Liligili)							

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	310	347	391	435	416	296	276	266	290	228	227	207
nxLAmax>70	6,3	7,4	8,2	7,1	6,0	4,0	2,6	1,6	1,7	1,8	1,8	1,6
LAeq,23-07h (Lnight)	48,3	49,0	49,9	49,5	48,9	47,1	46,2	45,5	45,8	45,1	45,5	45,1

- (1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max
- (2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité
- (3) les niveaux principals à l'évaluation du 'cadastre de bruit'

Partie 3 : Résultats par NMT (période de nuit 23-06 h)

NMT 1 STEENOKKERZEEL Rapport Annuel 2003

Données générales

Donnicos generales		_	Odificiation aco
la période d'observation		1	le nombre total
la période d'évaluation	23-06 h HL		le nombre des
le niveau d'activité			le niveau de co

Corrélation des événements sonores

le nombre total des événements sonores repérés	
le nombre des événements correlés aux passages d'avion	
le niveau de corrélation	

	Les valeurs moyennes par nuit (2)
distribution discrète par classe de 1 dB sur base des niveaux LAmax:	nombre d'événements
NMT 1 à STEENOKKERZEEL se situe sur le terrain de l'aéroport installations aéroportuaires. Les evénéments sonores corréles y des avions au sol que les bruits des avions en survol (ou une d'C'est la raison pour laquelle les enregistrements sonores ne sont	comprennent aussi bien les bruits combinaison des deux).
l'évaluation de l'immission du bruit des mouvements spécifiques (conséquence les résultats concernés ne sont pas établis dans les	(décollages/atterrissages). En
distribution rélative par classe de 5 dB sur base des niveaux LAmax:	nxLAmax>65 nxLAmax>70 nxLAmax>75 nxLAmax>80 nxLAmax>85 nxLAmax>90 nxLAmax>95 nxLAmax>100 niveau de dépassement : (LAmax,nx) LAmax,20x LAmax,5x LAmax,4x

L'évolution mensuelle (2)

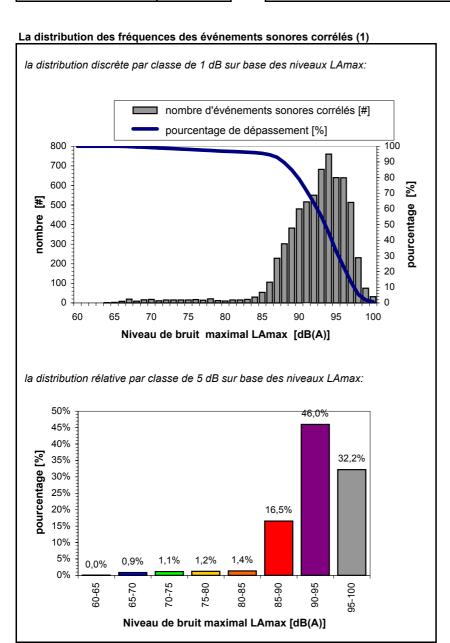
jan fev mar avr mai juin jul aout sep oct nov dec

nombre d'événements sonores
corrélés aux passages d'avion

nxLAmax>70
LAeq,23-06h

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 2 KORTENBERG Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	99,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	7933
le nombre des événements correlés aux passages d'avion	6508
le niveau de corrélation	82,0%

nombre d'événements	18,0
distribution par classe de 5	dB
sur base des niveaux LAma	ax :
60-65	n.v.t.
65-70	0,2
70-75	0,2
75-80	0,2
80-85	0,2
85-90	3,0
90-95	8,3
95-100	5,8
>= 100	0,1

Les valeurs moyennes par nuit (2)

fréquence de dépassement: (nxLAmax>=X)

nxLAmax>60	n.v.t.
nxLAmax>65	18,0
nxLAmax>70	17,8
nxLAmax>75	17,6
nxLAmax>80	17,4
nxLAmax>85	17,2
nxLAmax>90	14,2
nxLAmax>95	5,9
nxLAmax>100	0,1
	•

niveau de dépassement : (LAmax,nx)

2X,IIX <i>)</i>	
LAmax,20x	0,0
LAmax,10x	92,9
LAmax,5x	95,5
LAmax,4x	96,0
LAmax,3x	96,6
LAmax,2x	97,2
LAmax,1x	97,9

le niveau équivalent (LAeq) :

LAeq,23-06h **67,2**

L'évolution mensuelle (2)

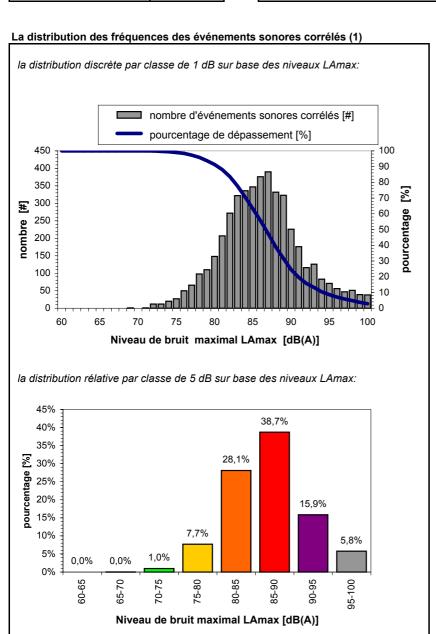
nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
370	364	416	474	529	596	816	768	676	572	479	448
11,9	12,8	13,4	16,0	16,9	19,8	25,9	24,6	22,3	18,6	16,4	14,8
66,3	65,8	66,3	66,0	66,9	68,0	69,3	68,5	67,8	66,4	67,0	66,4

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 3 DIEGEM Rapport Annuel 2003

Données générales

z cimiece gemeranee	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,6%

Corrélation des événements sonores

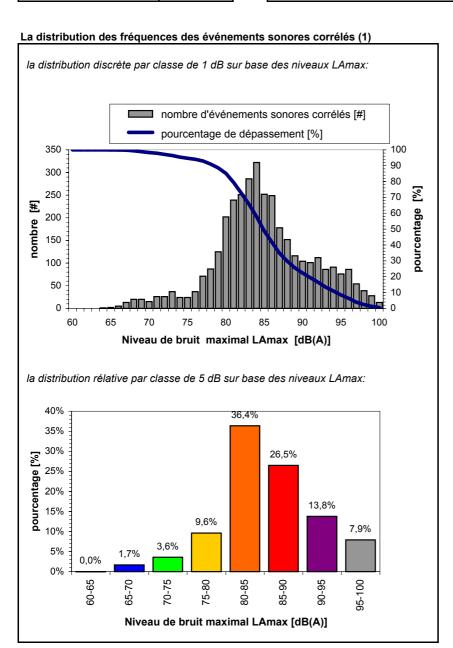
le nombre total des événements sonores repérés	5892
le nombre des événements correlés aux passages d'avion	4572
le niveau de corrélation	77,6%

Les valeurs moyennes p	ai fiuit (2)
nombre d'événements	12,7
distribution par classe de	5 dB
sur base des niveaux LAr	
60-65	n.v.t.
65-70	n.v.t.
70-75	0,1
75-80	1,0
80-85	3,6
85-90	4,9
90-95	2,0
95-100	0,7
>= 100	0,4
fréquence de dépasseme	ent:
(nxLAmax>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	n.v.t.
nxLAmax>70	12,7
nxLAmax>75	12,6
nxLAmax>80	11,6
nxLAmax>85	8,0
nxLAmax>90	3,1
nxLAmax>95	1,1
nxLAmax>100	0,4
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	82,8
LAmax,5x	87,9
LAmax,4x	89,0
LAmax,3x	90,1
LAmax,2x	91,9
LAmax,1x	95,4
le niveau équivalent (LA	eq) :
LAeq,23-06h	64,8
LAeq,23-06h	64,

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	326	304	340	369	395	421	533	420	412	370	349	333
nxLAmax>70	10,5	10,9	11,1	12,7	12,7	14,8	17,2	13,8	13,7	12,1	12,0	10,9
LAeq,23-06h	64,2	63,7	65,2	65,8	65,3	66,7	66,2	64,6	64,2	63,9	63,7	63,1

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 4 NOSSEGEM Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,7%

Corrélation des événements sonores

le nombre total des événements sonores repérés	4031
le nombre des événements correlés aux passages d'avion	3574
le niveau de corrélation	88,7%

Les valeurs moyennes pa	r nuit (2)						
nombre d'événements	9,9						
distribution par classe de 5 dB							
sur base des niveaux LAmax :							
60-65	n.v.t.						
65-70	0,2						
70-75	0,4						
75-80	1,0						
80-85	3,6						
85-90	2,6						
90-95	1,4						
95-100	0,8						
>= 100	0,0						
fréquence de dépassemen	t:						
(nxLAmax>=X)							
nxLAmax>60	n.v.t.						
nxLAmax>65	9,9						
nxLAmax>70	9,8						
nxLAmax>75	9,4						
nxLAmax>80	8,4						
nxLAmax>85	4,8						
nxLAmax>90	2,2						
nxLAmax>95	0,8						
nxLAmax>100	0,0						
niveau de dépassement :							
(LAmax,nx)							
LAmax,20x	0,0						
LAmax,10x	0,0						
LAmax,5x	84,7						
LAmax,4x	86,1						
LAmax,3x	87,9						
LAmax,2x	90,6						
LAmax,1x	94,3						
le niveau équivalent (LAec	J):						
LAeq,23-06h	62,4						

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passag

nxLAmax>70

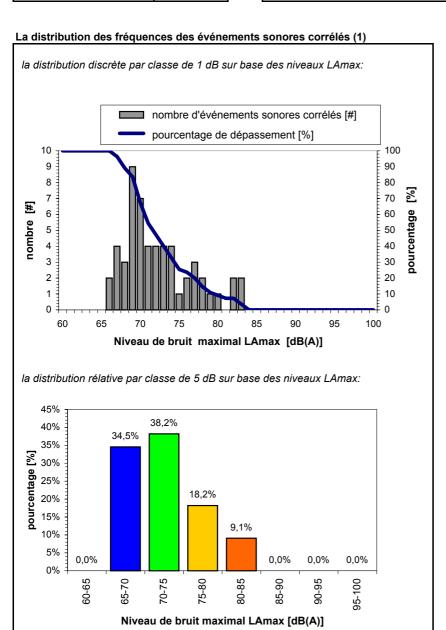
LAeq,23-06h

jes	d'avion	

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
328	230	230	387	249	220	300	401	297	367	299	266
10,4	7,8	7,3	13,1	8,0	7,2	9,5	12,9	9,8	12,0	10,2	8,8
62,8	58,3	58,8	63,4	58,9	59,1	61,3	66,0	63,2	64,6	63,0	61,6

(1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

(2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 6 E VERE Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	99,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	472
le nombre des événements correlés aux passages d'avion	55
le niveau de corrélation	11,7%

Les valeurs moyennes par nuit (2)							
nombre d'événements	0,2						
distribution par classe de 5 dB							
sur base des niveaux LAmax :							
60-65	n.v.t.						
65-70	0,1						
70-75	0,1						
75-80	0,0						
80-85	0,0						
85-90	0,0						
90-95	0,0						
95-100	0,0						
>= 100	0,0						
fréquence de dépassement (nxLAmax>=X)							
nxLAmax>60	n.v.t.						
nxLAmax>65	0,2						
nxLAmax>70	0,1						
nxLAmax>75	0,0						
nxLAmax>80	0,0						
nxLAmax>85	0,0						
nxLAmax>90	0,0						
nxLAmax>95	0,0						
nxLAmax>100	0,0						
niveau de dépassement :							
(LAmax,nx) LAmax,20x	0,0						
LAmax,10x	0,0						
LAmax.5x	0,0						
LAmax,4x	0,0						
E/ IIIux, TX	0,0						

L'évolution mensuelle (2)

nombre d'événements sonores
corrélés aux passages d'avion

nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
12	6	2	5	10	4	5	3	3	1	2	2
0,3	0,1	0,1	0,0	0,2	0,1	0,1	0,1	0,1	0,0	0,1	0,1
33,5	29,1	27,3	27,7	31,6	37,3	32,6	32,7	26,3	20,7	29,7	29,1

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

LAmax,3x

LAmax,2x

LAmax,1x

le niveau équivalent (LAeq) :

LAeq,23-06h

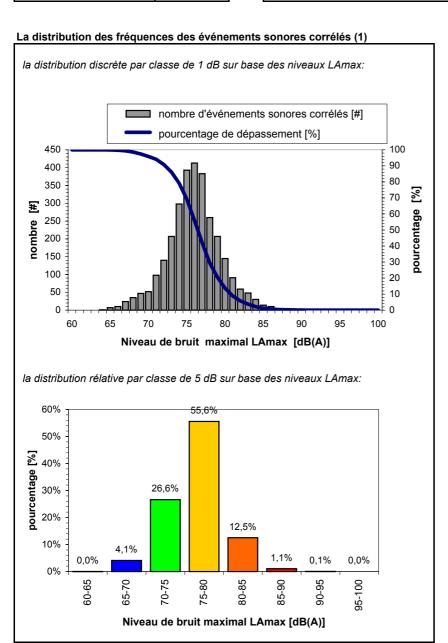
0,0

0,0

0,0

31,5

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 7 STERREBEEK Rapport Annuel

Données générales

z cimiece gemeranee	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,3%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3135
le nombre des événements correlés aux passages d'avion	2981
le niveau de corrélation	95,1%

	Les	valeur	s mo	yennes	par	nuit	(2)
ı							
ı							

Les valeurs moyennes par	r nuit (2)						
nombre d'événements	8,3						
distribution par classe de 5 dB							
sur base des niveaux LAmax :							
60-65	n.v.t.						
65-70	0,3						
70-75	2,2						
75-80	4,6						
80-85	1,0						
85-90	0,1						
90-95	0,0						
95-100	0,0						
>= 100	0,0						
fréquence de dépassement	:						
(nxLAmax>=X)							
nxLAmax>60	n.v.t.						
nxLAmax>65	8,3						
nxLAmax>70	8,0						
nxLAmax>75	5,7						
nxLAmax>80	1,1						
nxLAmax>85	0,1						
nxLAmax>90	0,0						
nxLAmax>95	0,0						
nxLAmax>100	0,0						
niveau de dépassement :							
(LAmax,nx)							
LAmax,20x	0,0						
LAmax,10x	0,0						
LAmax,5x	75,6						
LAmax,4x	76,5						
LAmax.3x	77,4						
LAmax,2x	78,5						
LAmax,1x	80,3						
·							
le niveau équivalent (LAeq) -						
LAeq,23-06h	53,6						

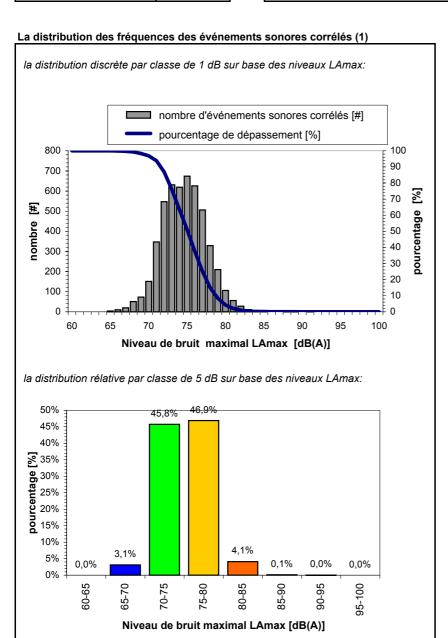
L'évolution mensuelle (2)

nxLAmax>70
corrélés aux passages d'avion
nombre d'événements sonores

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
162	200	209	230	238	220	294	350	288	278	267	245
5,3	6,9	6,9	7,4	7,3	6,8	8,9	10,5	9,2	8,9	9,0	8,1
51,1	52,1	52,5	52,3	52,8	51,9	53,7	54,7	55,1	54,8	54,8	54,5

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT **8 KAMPENHOUT** Rapport Annuel

Données générales

z cimiece gemeranee	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,8%

Corrélation des événements sonores

le nombre total des événements sonores repérés	5101
le nombre des événements correlés aux passages d'avion	5020
le niveau de corrélation	98,4%

Les valeurs moyennes p	oar nuit (2)								
nombre d'événements	13,								
distribution par classe de 5 dB									
sur base des niveaux LA									
60-65	n.v.								
65-70	0,								
70-75	6,								
75-80	6,								
80-85	0,								
85-90	0,								
90-95	0,								
95-100	0,								
>= 100	0,								
>= 100	0,								
fréquence de dépasseme	ant.								
(nxLAmax>=X)	,,,,,								
nxLAmax>60	n.v.								
nxLAmax>65	13,								
nxLAmax>70	13,								
nxLAmax>75	7,								
nxLAmax>80	0,								
nxLAmax>85	0,								
nxLAmax>90	0,								
nxLAmax>95	0,								
nxLAmax>100									
HXLAHIdX 100	0,								
niveau de dépassement :									
(LAmax,nx)									
LAmax,20x	0,								
LAmax,10x	73,								
LAmax,5x	76,								
LAmax,4x	76,								
LAmax,3x	77,								
LAmax,2x	78,								
LAmax,1x	79,								
le niveau équivalent (LA	eq):								
LAeg,23-06h	53,								
q, 	30,								

L'évolution mensuelle (2)

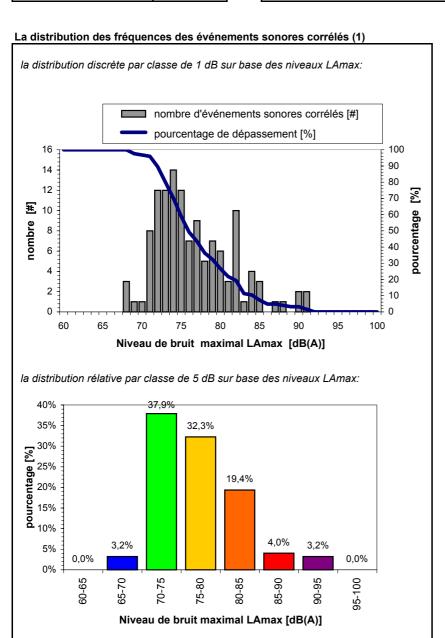
nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
312	322	336	340	531	451	543	543	447	413	380	402
9,9	11,3	10,6	11,5	16,3	14,4	16,7	17,1	14,3	13,5	13,0	12,9
53,5	53,0	53,5	52,5	54,5	53,3	53,6	53,2	53,1	52,9	53,8	53,4

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 9 PERK Rapport Annuel

Données générales

z cimicoo gomeranoo	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	96,3%

Corrélation des événements sonores

le nombre total des événements sonores repérés	761
le nombre des événements correlés aux passages d'avion	124
le niveau de corrélation	16,3%

Les valeurs moyennes par	nuit (2)
nombre d'événements	0,4
nombre a evenements	U, 4
distribution par classe de 5	dB
sur base des niveaux LAma	
60-65	n.v.t.
65-70	0,0
70-75	0,1
75-80	0,1
80-85	0,1
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépassement	:
(nxLAmax>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	0,4
nxLAmax>70	0,3
nxLAmax>75	0,2
nxLAmax>80	0,1
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,11x)	0,0
LAmax,10x	0,0
LAmax.5x	0,0
LAmax,4x	0,0
LAmax,3x	0,0
LAmax,2x	0,0
LAmax,1x	0,0
LAIIIax, ix	0,0
le niveau équivalent (LAeq):
LAeq,23-06h	39,9

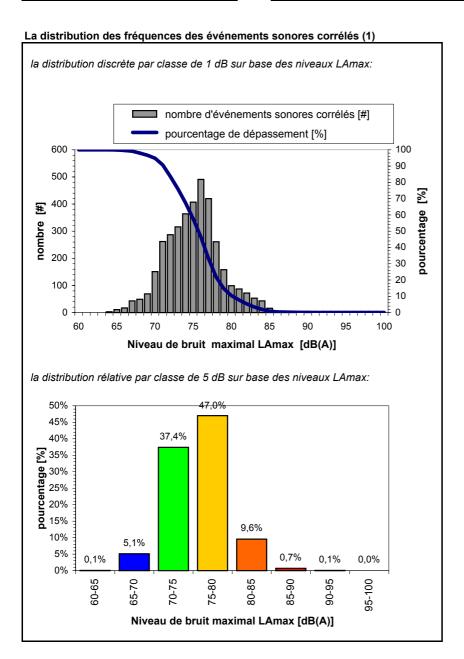
L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
60	3	28	10	1	0	4	0	0	10	2	6
1,9	0,1	0,8	0,4	0,0	0,0	0,1	0,0	0,0	0,3	0,1	0,2
47,3	31,1	38,7	44,5	20,4	0,0	36,3	0,0	0,0	41,9	30,2	32,4

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max


⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

Données générales

Bonnood gonorando	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	99,1%

Corrélation des événements sonores

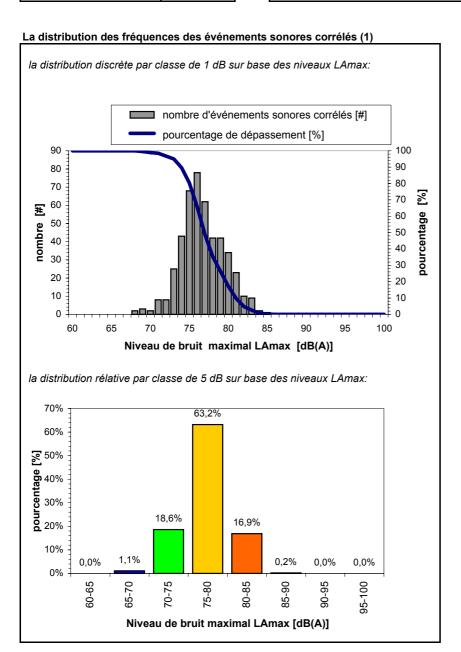
le nombre total des événements sonores repérés	4867
le nombre des événements correlés aux passages d'avion	3690
le niveau de corrélation	75,8%

Les va	leurs m	oyennes	par	nuit	(2

Les vaieurs moyennes pa	r Huit (2)								
nombre d'événements	10,2								
nombre d'évenements	10,2								
distribution par classe de 5 dB									
•	sur base des niveaux LAmax :								
60-65	n.v.t.								
65-70	0,5								
70-75	3,8								
75-80	4,8								
80-85	1,0								
85-90	0,1								
90-95	0,0								
95-100	0,0								
>= 100	0,0								
f-t	L.								
fréquence de dépassemen (nxLAmax>=X)	Ľ.								
nxLAmax>60	n v t								
nxLAmax>65	n.v.t. 10,2								
nxLAmax>70	9,7								
nxLAmax>75	5,9								
nxLAmax>80	1,1								
nxLAmax>85	0,1								
nxLAmax>90	0,1								
nxLAmax>95	0,0								
nxLAmax>100	0,0								
	0,0								
niveau de dépassement :									
(LAmax,nx)									
LAmax,20x	0,0								
LAmax,10x	68,0								
LAmax,5x	75,7								
LAmax,4x	76,5								
LAmax,3x	77,2								
LAmax,2x	78,2								
LAmax,1x	80,1								
le niveau équivalent (LAec):								
LAeg,23-06h	54,8								
	,-								

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	334	312	346	316	376	356	383	273	252	241	251	250
nxLAmax>70	10,0	10,8	10,9	10,4	11,5	11,2	11,6	8,0	7,9	7,7	8,3	7,8
LAeq,23-06h	55,1	54,9	55,8	54,8	55,8	55,8	55,9	53,8	54,0	53,7	53,4	53,6

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max


⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

Données générales

z omioo gemerane	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	99,8%

Corrélation des événements sonores

le nombre total des événements sonores repérés	518
le nombre des événements correlés aux passages d'avion	462
le niveau de corrélation	89,2%

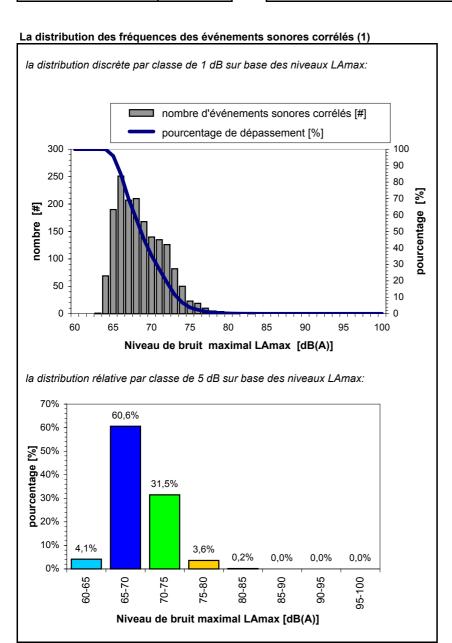
Les valeurs moyennes par nuit (2)

Les valeurs moyennes p	ar nuit (2)
nombre d'événements	1,3
distribution par classe de	5 dD
sur base des niveaux LAn	
60-65	n.v.t.
65-70	0,0
70-75	0,0
75-80	0,8
80-85	0,2
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépasseme	nt:
(nxLAmax>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	1,3
nxLAmax>70	1,3
nxLAmax>75	1,0
nxLAmax>80	0,2
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	0,0
LAmax,5x	0,0
LAmax,4x	0,0
LAmax,3x	0,0
LAmax,2x	0,0
LAmax,1x	75,1
le niveau équivalent (LAe	q):
LAeg,23-06h	43,8
	10,0

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	135	17	4	140	1	0	0	55	0	81	29	0
nxLAmax>70	4,3	0,6	0,1	4,8	0,0	0,0	0,0	1,7	0,0	2,6	1,0	0,0
LAeq,23-06h	48,6	40,0	32,7	49,2	20,1	0,0	0,0	45,6	0,0	47,5	44,7	0,0

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 12 DUISBURG Rapport Annuel 2003

Données générales

z cimeco gonerano	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	97,5%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1764
le nombre des événements correlés aux passages d'avion	1690
le niveau de corrélation	95,8%

nombre d'événements	4,7						
distribution par classe de 5 dB sur base des niveaux LAmax :							
60-65	n.v.t.						
65-70	2,9						
70-75	1,5						

Les valeurs moyennes par nuit (2)

75-80 0,2 80-85 0,0 85-90 0,0 90-95 0,0 95-100 0,0

fréquence de dépassement: (nxLAmax>=X)

 nxLAmax>60
 n.v.t.

 nxLAmax>65
 4,6

 nxLAmax>70
 1,7

 nxLAmax>75
 0,2

 nxLAmax>80
 0,0

0.0

0,0

0,0

0,0

71,6

nxLAmax>95 nxLAmax>100

nxLAmax>85

nxLAmax>90

niveau de dépassement :
(LAmax,nx)

LAmax,20x

LAmax,10x

LAmax,5x

LAmax,4x

LAmax,4x

LAmax,3x

LAmax,2x

69,3

le niveau équivalent (LAeq) :

LAmax,1x

4 00 001

LAeq,23-06h **44,5**

L'évolution mensuelle (2)

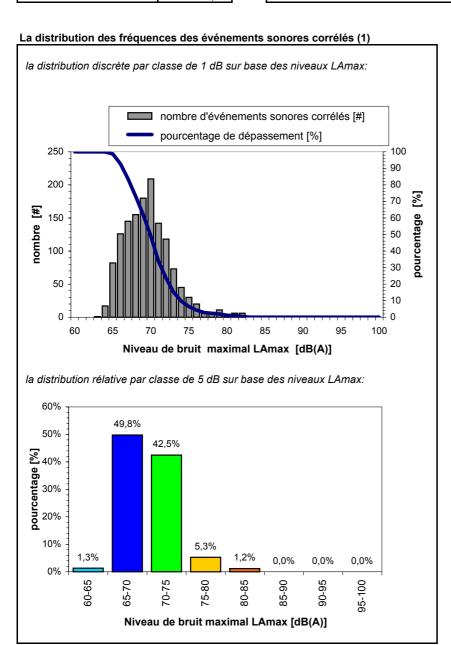
nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
91	108	139	124	155	122	183	224	194	112	110	128
1,5	1,0	0,6	0,6	0,9	0,3	1,9	3,5	2,4	2,4	2,5	2,4
42,0	41,7	42,2	42,1	43,1	42,3	44,8	47,7	46,5	44,9	45,5	45,6

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 13 GRIMBERGEN Rapport Annuel 2003

Données générales

Domices generales								
la période d'observation	2003							
la période d'évaluation	23-06 h HL							
le niveau d'activité	99,0%							

Corrélation des événements sonores

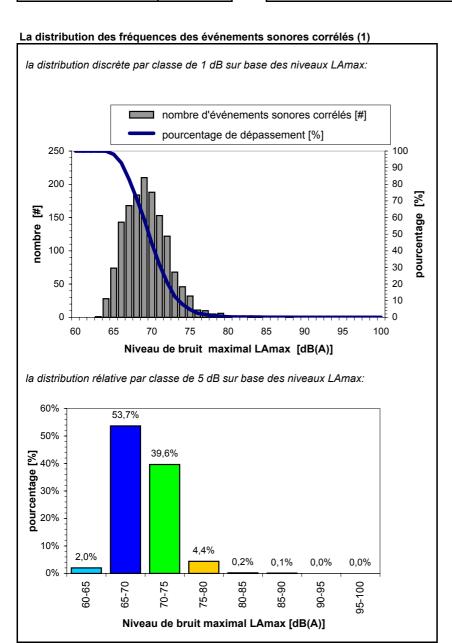
le nombre total des événements sonores repérés	1546
le nombre des événements correlés aux passages d'avion	1382
le niveau de corrélation	89,4%

Les valeurs moyennes p	ar nuit (2)
nombre d'événements	3,8
distribution par classe de	5 dB
sur base des niveaux LAr	
60-65	n.v.t.
65-70	1,9
70-75	1,6
75-80	0,2
80-85	0,0
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépasseme	nt:
(nxLAmax>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	3,8
nxLAmax>70	1,9
nxLAmax>75	0,2
nxLAmax>80	0,0
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	0,0
LAmax,5x	0,0
LAmax,4x	0,0
LAmax,3x	67,5
LAmax,2x	69,7
LAmax,1x	71,7
le niveau équivalent (LAe	eq):
LAeq,23-06h	43,1
·	

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	136	112	141	144	180	127	157	93	112	62	58	60
nxLAmax>70	3,3	1,4	2,3	2,1	2,6	1,4	2,3	1,1	1,4	1,6	1,4	1,4
LAeq,23-06h	44,6	42,6	44,8	44,0	44,9	42,8	43,9	41,3	42,2	40,8	41,8	40,4

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 14 WEMMEL Rapport Annuel 2003

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1536
le nombre des événements correlés aux passages d'avion	1451
le niveau de corrélation	94,5%

Les valeurs moyennes par nuit (2)										
nombre d'événements	4,0									
distribution par alassa da F	: AD									
distribution par classe de 5 sur base des niveaux LAm										
60-65	n.v.t.									
65-70	2,2									
70-75	1,6									
75-80	0,2									
80-85	0,0									
85-90										
90-95	0,0									
90-95 95-100	0,0									
95-100 >= 100	0,0									
>= 100	0,0									
fréquence de dépassemer	ıt·									
(nxLAmax>=X)										
nxLAmax>60	n.v.t.									
nxLAmax>65	3,9									
nxLAmax>70	1,8									
nxLAmax>75	0,2									
nxLAmax>80	0,0									
nxLAmax>85	0,0									
nxLAmax>90	0,0									
nxLAmax>95	0,0									
nxLAmax>100	0,0									
TIXEATHAX 100	0,0									
niveau de dépassement :										
(LAmax,nx)										
LAmax,20x	0,0									
LAmax,10x	0,0									
LAmax,5x	0,0									
LAmax,4x	64,4									
LAmax,3x	67,7									
LAmax,2x	69,7									
LAmax,1x	71,5									
le niveau équivalent (LAe	q):									
LAeg,23-06h	44,1									
2, 104,20 0011	7, 1									

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

nxLAmax>70

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
112	137	186	185	156	160	157	98	89	57	57	57
1,8	1,3	2,2	1,9	2,3	3,1	2,5	1,2	1,1	1,1	1,4	1,4
42,7	43,2	44,9	45,3	45,2	46,5	45,6	43,4	43,1	40,1	43,4	41,9

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

NMT 15 ZAVENTEM Rapport Annuel 2003

_			
no	nnaac	généra	IAC

la période d'observation	
la période d'évaluation	23-06 h HL
le niveau d'activité	

Corrélation des événements sonores

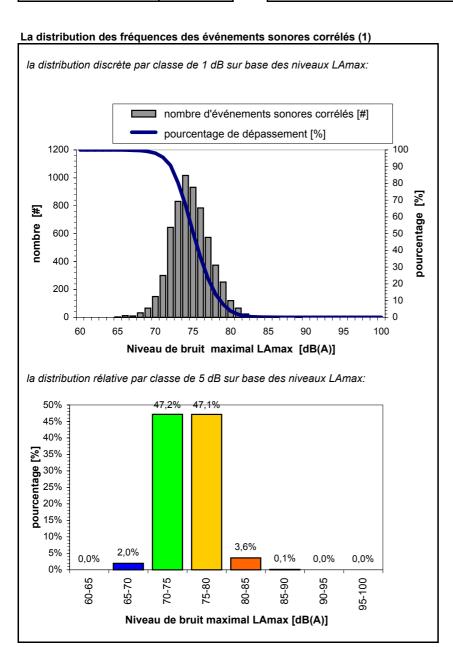
le nombre total des événements sonores repérés	
le nombre des événements correlés aux passages d'avion	
le niveau de corrélation	

La distribution o	des fréquences des événements sonores corrélés (1)	I 1	Les valeurs moyennes par	nuit (2)
la distribution di	iscrète par classe de 1 dB sur base des niveaux LAmax:		nombre d'événements	
ii c	NMT 15 à ZAVENTEM se situe sur le terrain de l'aéroport à prox nstallations aéroportuaires. Les evénéments sonores corréles y des avions au sol que les bruits des avions en survol (ou une C'est la raison pour laquelle les enregistrements sonores ne son lévaluation de l'immission du bruit des mouvements spécifiques	compr combi t pas c	ennent aussi bien les bruit naison des deux). considérés d'importance à	X:
C	conséquence les résultats concernés ne sont pas établis dans le	s table	eaux.	
la distribution ré	élative par classe de 5 dB sur base des niveaux LAmax:		nxLAmax>65 nxLAmax>70 nxLAmax>75 nxLAmax>80 nxLAmax>85 nxLAmax>90 nxLAmax>95 nxLAmax>100 niveau de dépassement : (LAmax,nx) LAmax,20x LAmax,10x LAmax,5x LAmax,4x LAmax,3x LAmax,2x LAmax,1x le niveau équivalent (LAeq) LAeq,23-06h	:

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion												
nxLAmax>70												
LAeq,23-06h												

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 16 VELTEM Rapport Annuel 2003

Données générales

Bonnees generales								
la période d'observation	2003							
la période d'évaluation	23-06 h HL							
le niveau d'activité	98,3%							

Corrélation des événements sonores

le nombre total des événements sonores repérés	6376
le nombre des événements correlés aux passages d'avion	6261
le niveau de corrélation	98,2%

	()						
nombre d'événements	17,5						
distribution par classe de 5 sur base des niveaux LAm							
60-65	n.v.t.						
65-70	0,3						
70-75	8,2						
75-80	8,2						
80-85	0,6						
85-90	0,0						
90-95	0,0						
95-100	0,0						
>= 100	0,0						
fréquence de dépassemen	t:						
(nxLAmax>=X)							
nxLAmax>60	n.v.t.						
nxLAmax>65	17,5						
nxLAmax>70	17,1						
nxLAmax>75	8,9						
nxLAmax>80	0,7						
nxLAmax>85	0,0						
nxLAmax>90	0,0						
nxLAmax>95	0,0						
nxLAmax>100	0,0						
niveau de dépassement :							
(LAmax,nx)							
LAmax,20x	0,0						
LAmax,10x	74,6						
LAmax,5x	76,5						
LAmax,4x	77,0						

Les valeurs moyennes par nuit (2)

L'évolution mensuelle (2)

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	342	377	409	466	514	571	794	727	635	539	453	434
nxLAmax>70	10,7	13,0	13,4	15,2	16,2	18,8	25,3	24,3	21,5	17,5	15,5	13,9
LAeq,23-06h	53,1	52,9	53,5	53,3	54,5	54,6	56,1	55,4	55,1	54,2	54,4	53,6

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

LAmax,3x

LAmax,2x

LAmax,1x

le niveau équivalent (LAeq) :

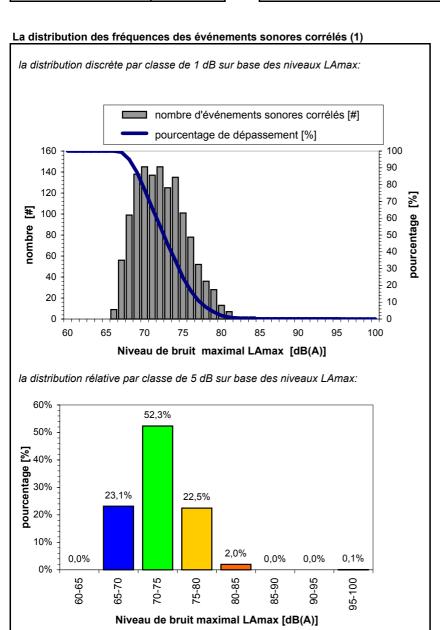
LAeq,23-06h

77,6 78,3

79,3

54,3

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 19 VILVOORDE Rapport Annuel 2003

Données générales

z omioo gemerane	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	82,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1486
le nombre des événements correlés aux passages d'avion	1309
le niveau de corrélation	88,1%

nombre d'événements	4,3
distribution par classe de 5 o	

Les valeurs moyennes par nuit (2)

60-65	n.v.t.
65-70	1,0
70-75	2,3
75-80	1,0
80-85	0,1
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0

fréquence de dépassement: (nxLAmax>=X)

.max>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	4,3
nxLAmax>70	3,3
nxLAmax>75	1,1
nxLAmax>80	0,1
nxLAmax>85	0,0
nxLAmax>90	0,0

0,0

0,0

niveau de dépassement : (LAmax,nx)

nxLAmax>95

nxLAmax>100

- /-	ux,iix)	
LAmax,5x 0,0 LAmax,4x 68,3 LAmax,3x 70,6 LAmax,2x 72,8	LAmax,20x	0,0
LAmax,4x 68,3 LAmax,3x 70,6 LAmax,2x 72,8	LAmax,10x	0,0
LAmax,3x 70,6 LAmax,2x 72,8	LAmax,5x	0,0
LAmax,2x 72,8	LAmax,4x	68,3
- /-	LAmax,3x	70,6
LAmax,1x 75,1	LAmax,2x	72,8
	LAmax,1x	75,1

le niveau équivalent (LAeq) :

LAeq,23-06h **45,2**

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

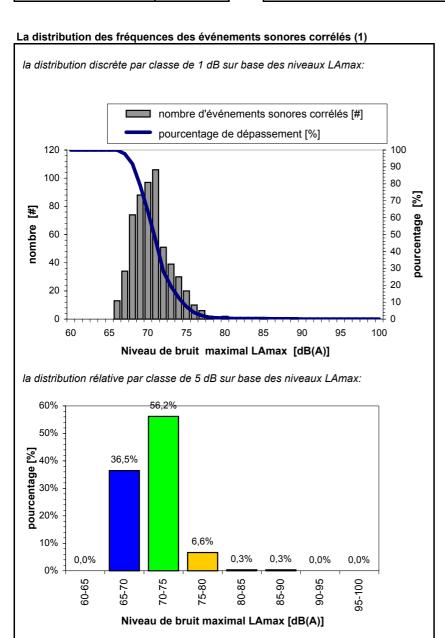
nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
145	123	139	13	184	17	162	0	137	142	127	120
5,4	2,8	3,3	0,4	4,5	2,2	3,8	0,0	3,2	3,8	3,7	3,0
48,1	44,6	45,7	34,4	46,6	41,1	45,7	0,0	44,4	45,5	45,0	44,7

(1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

(2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 20 MACHELEN Rapport Annuel 2003

Données générales

z cimiece gemeranee	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	93,4%

Corrélation des événements sonores

le nombre total des événements sonores repérés	705
le nombre des événements correlés aux passage	es d'avion 573
le niveau de corrélation	81,3%

Les valeurs moyennes par nuit (2)

nombre d'événements	1,
distribution par classe de	: 5 dB
sur base des niveaux LA	
60-65	n.v.t
65-70	0,6
70-75	0,9
75-80	0,
80-85	0,0
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fráguanas do dánascom	ant:
fréquence de dépasseme (nxLAmax>=X)	311L.
nxLAmax>60	n v f
nxLAmax>65	n.v.t
nxLAmax>70	1,
nxLAmax>75 nxLAmax>80	0,
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	
nxLAmax>100	0,0
IIXLAIIIAX 100	0,0
niveau de dépassement	:
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	0,0
LAmax,5x	0,0
LAmax,4x	0,0
LAmax,3x	0,0
LAmax,2x	0,0
LAmax,1x	70,2
le niveau équivalent (LA	eq):
LAeg,23-06h	39,

L'évolution mensuelle (2)

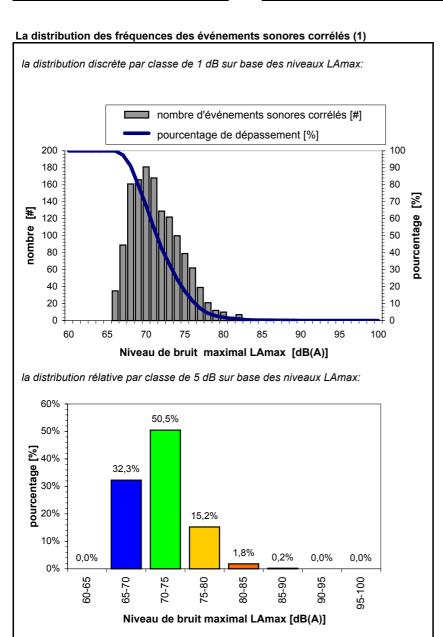
nombre d'événements sonores corrélés aux passages d'avion nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
48	60	80	8	91	31	31	20	51	50	49	54
3,1	1,2	1,5	0,2	1,9	0,5	0,5	0,3	0,9	1,2	1,3	1,3
43,8	39,3	40,8	33,5	41,8	35,8	36,3	34,6	40,7	40,7	39,3	39,9

(1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 21 STROMBEEK-BEVER Rapport Annuel 2003

Données générales

Dominous gonoraise	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	97,5%

Corrélation des événements sonores

le nombre total des événements sonores repérés	1683
le nombre des événements correlés aux passages d'avion	1391
le niveau de corrélation	82,7%

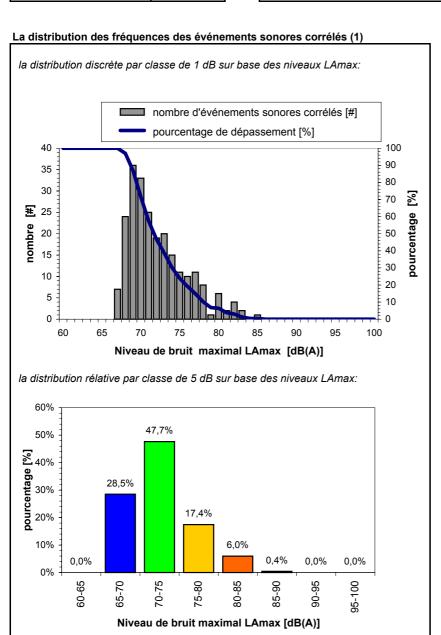
Les valeurs moyennes par nuit (2)

Les valeurs moyennes pa	r nuit (2)
nombre d'événements	3,9
distribution par classe de 5	dB
sur base des niveaux LAma	
60-65	n.v.t.
65-70	1,3
70-75	2,0
75-80	0,6
80-85	0,1
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépassement	II.
(nxLAmax>=X)	· .
nxLAmax>60	n.v.t
nxLAmax>65	3,9
nxLAmax>70	2,6
nxLAmax>75	0,7
nxLAmax>80	0,1
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	0,0
LAmax,5x	0,0
LAmax,4x	0,0
LAmax,3x	69,1
LAmax,2x	71,2
LAmax,1x	73,8
le niveau équivalent (LAeq):
LAeg,23-06h	46,2
LAGY,20-0011	40,2

	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	82	142	165	14	158	170	165	103	137	84	70	101
nxLAmax>70	2,8	3,1	3,9	0,3	3,1	3,9	3,6	2,0	2,9	2,0	1,7	2,5
LAeq,23-06h	45,2	45,9	47,5	34,9	46,7	48,5	47,5	45,8	47,1	44,5	44,4	46,2

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 22 BRUSSEL Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	37,7%

Corrélation des événements sonores

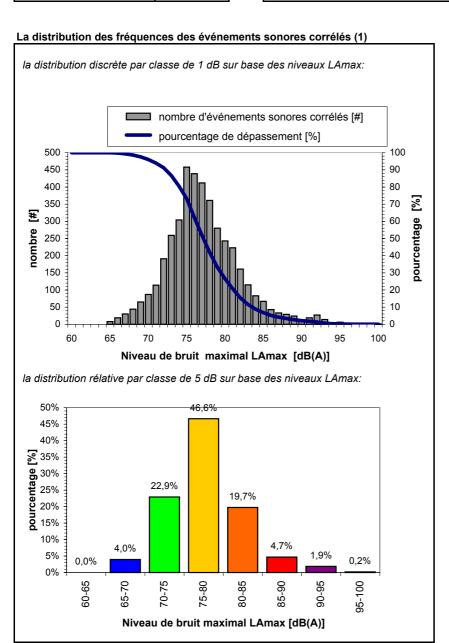
le nombre total des événements sonores repérés	613
le nombre des événements correlés aux passages d'avion	235
le niveau de corrélation	38,3%

Les valeurs moyennes p	ar nuit (2)							
nombre d'événements	1,7							
	· · ·							
distribution par classe de 5 dB								
sur base des niveaux LAn	nax :							
60-65	n.v.t.							
65-70	0,5							
70-75	0,8							
75-80	0,3							
80-85	0,1							
85-90	0,0							
90-95	0,0							
95-100	0,0							
>= 100	0,0							
fréquence de dépasseme	nt:							
(nxLAmax>=X)								
nxLAmax>60	n.v.t.							
nxLAmax>65	1,7							
nxLAmax>70	1,2							
nxLAmax>75	0,4							
nxLAmax>80	0,1							
nxLAmax>85	0,0							
nxLAmax>90	0,0							
nxLAmax>95	0,0							
nxLAmax>100	0,0							
niveau de dépassement :								
(LAmax,nx)								
LAmax,20x	0.0							
LAmax,10x	0,0							
LAmax,5x	0,0							
LAmax,4x	0,0							
LAmax,3x	0,0							
LAmax,2x	0,0							
LAmax,1x	70,9							
le niveau équivalent (LAe	eq):							
LAeg,23-06h	40,6							
27 (04,20 00)	70,0							

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
-	-	-	-	-	0	63	10	-	77	57	28
-	-	-	-	-	0,0	1,2	0,9	-	2,1	1,3	1,3
-	-	-	-	-	0,0	39,6	38,1	-	43,4	40,8	41,4
						- - - - 0	- - - 0 63 - - - 0,0 1,2	- - - 0 63 10 - - - 0,0 1,2 0,9	- - - 0 63 10 - - - - 0,0 1,2 0,9 -	- - - 0 63 10 - 77 - - - - 0,0 1,2 0,9 - 2,1	- - - 0 63 10 - 77 57 - - - 0,0 1,2 0,9 - 2,1 1,3

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 30 HAREN Rapport Annuel

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,1%

Corrélation des événements sonores

le nombre total des événements sonores repérés	4434
le nombre des événements correlés aux passages d'avion	4183
le niveau de corrélation	94,3%

Les va	leurs m	oyennes	s par	nuit ((2	١
						•

Les valeurs moyennes par nuit (2)								
nombre d'événements	11,7							
distribution par classe de 5 dB								
sur base des niveaux LAmax :								
60-65 0,0								
65-70	0,5							
70-75	2,7							
75-80	5,4							
80-85	2,3							
85-90	0,5							
90-95	0,2							
95-100	0,0							
>= 100	0,0							
fréquence de dépassemer	nt:							
(nxLAmax>=X)								
nxLAmax>60	11,7							
nxLAmax>65	11,7							
nxLAmax>70	11,2							
nxLAmax>75	8,5							
nxLAmax>80	3,1							
nxLAmax>85	0,8							
nxLAmax>90	0,2							
nxLAmax>95	0,0							
nxLAmax>100	0,0							
niveau de dépassement :								
(LAmax,nx)								
LAmax,20x	0,0							
LAmax,10x	73,1							
LAmax,5x	77,8							
LAmax,4x	78,8							
LAmax,3x	80,1							
LAmax,2x	81,5							
LAmax,1x	84,0							
le niveau équivalent (LAeq) :								
LAeq,23-06h	56,6							

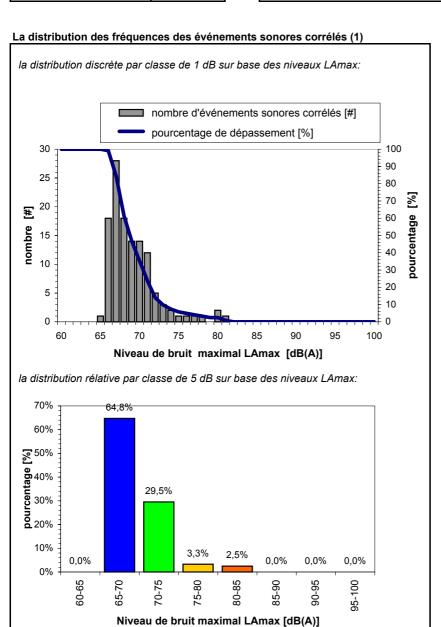
L'évolution mensuelle (2)

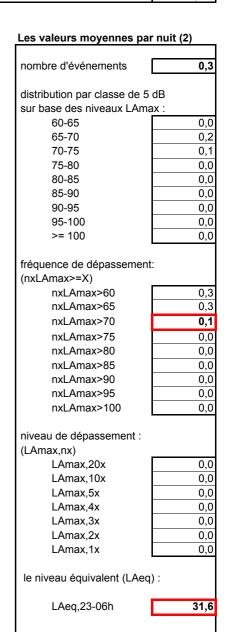
nxLAmax>70
corrélés aux passages d'avion
nombre d'événements sonores

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
271	240	345	339	310	379	466	416	388	339	344	346
11,0	8,4	10,8	11,2	9,5	12,1	14,5	12,7	12,0	10,5	10,9	10,9
56,1	54,6	57,9	57,8	56,3	57,6	57,5	57,2	56,3	55,2	54,8	55,4

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 31 EVERE Rapport Annuel 2003


Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	100,0%

Corrélation des événements sonores

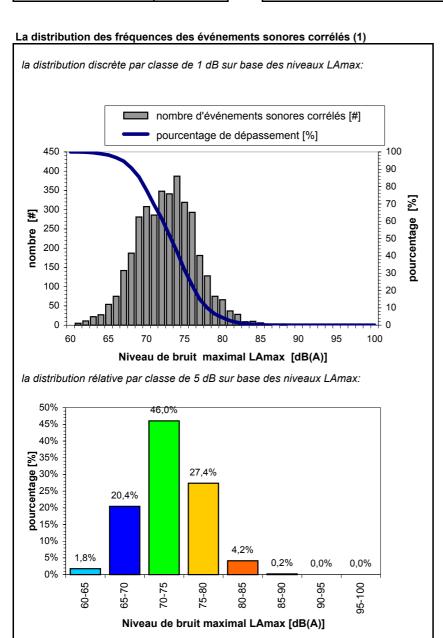
le nombre total des événements sonores repérés	156
le nombre des événements correlés aux passages d'avion	122
le niveau de corrélation	78,2%

L'évolution mensuelle (2)

= 0.0.mm.c (=)												
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	6	5	11	9	1	13	20	14	10	12	8	13
nxLAmax>70	0,0	0,1	0,1	0,1	0,0	0,2	0,3	0,1	0,1	0,1	0,1	0,2
LAeq,23-06h	28,5	33,0	29,2	30,7	20,1	33,1	35,3	31,2	29,3	32,2	29,2	34,1

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 40 KONINGSLO Rapport Annuel 2003

Données générales

z cimicoo gomeranoo	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	98,5%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3901
le nombre des événements correlés aux passages d'avion	3631
le niveau de corrélation	93,1%

Le	s va	leurs	mov	ennes/	nar	nuit	(2)
Le:	o va	ıcuı ə	11101	, 6111163	vai	HUIL	4

Les valeurs moyennes par nuit (2)								
nombre d'événements	10,1							
distribution par classe de 5 dB								
sur base des niveaux LAmax :								
60-65	0,2							
65-70	2,1							
70-75	4,6							
75-80	2,8							
80-85	0,4							
85-90	0,0							
90-95	0,0							
95-100	0,0							
>= 100	0,0							
fréquence de dépassemen	t:							
(nxLAmax>=X)								
`nxLAmax>60	10,1							
nxLAmax>65	9,9							
nxLAmax>70	7,9							
nxLAmax>75	3,2							
nxLAmax>80	0,4							
nxLAmax>85	0,0							
nxLAmax>90	0,0							
nxLAmax>95	0,0							
nxLAmax>100	0,0							
niveau de dépassement :								
(LAmax,nx)								
LAmax,20x	0,0							
LAmax,10x	63,8							
LAmax,5x	73,2							
LAmax,4x	74,2							
LAmax,3x	75,1							
LAmax,2x	76,3							
LAmax,1x	78,0							
le niveau équivalent (LAed	፡ (ዩ							
LAeq,23-06h	51,8							

L'évolution mensuelle (2)

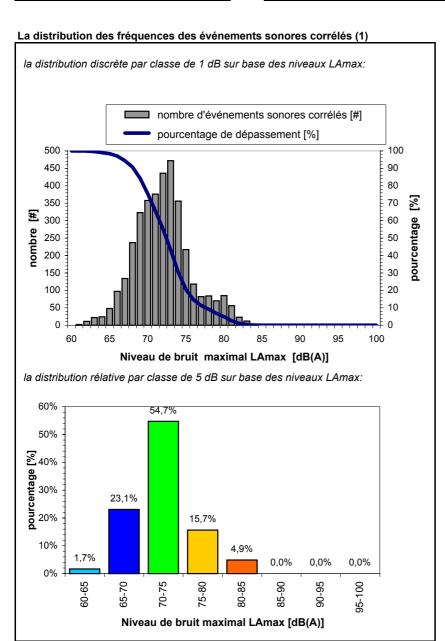
nombre d'événements sonores corrélés aux passages d'avion
nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
317	324	331	355	344	332	374	269	258	233	254	240
7,9	9,5	9,8	10,4	8,9	8,3	9,4	6,2	6,2	6,3	5,6	5,9
51,4	52,3	53,5	53,1	52,3	52,4	52,5	50,8	51,4	50,6	50,2	50,2

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 41 GRIMBERGEN Rapport Annuel

Données générales

Dominoco gonorarco	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	96,7%

Corrélation des événements sonores

le nombre total des événements sonores repérés	4041
le nombre des événements correlés aux passages d'avion	3648
le niveau de corrélation	90,3%

Les valeurs moyennes par nuit (2)

Les vaieurs moyennes pa	r nuit (2)							
	40.0							
nombre d'événements	10,3							
distribution par classe de 5 dB								
sur base des niveaux LAmax :								
60-65	0,2							
65-70	2,4							
70-75	5,7							
75-80	1,6							
80-85	0,5							
85-90	0,0							
90-95	0,0							
95-100	0,0							
>= 100	0,0							
fréquence de dépassemen	t:							
(nxLAmax>=X)								
nxLAmax>60	10,3							
nxLAmax>65	10,2							
nxLAmax>70	7,8							
nxLAmax>75	2,1							
nxLAmax>80	0,5							
nxLAmax>85	0,0							
nxLAmax>90	0,0							
nxLAmax>95	0,0							
nxLAmax>100	0,0							
niveau de dépassement :								
(LAmax,nx)								
LAmax,20x	0,0							
LAmax,10x	66,1							
LAmax,5x	72,5							
LAmax,4x	73,3							
LAmax,3x	74,1							
LAmax,2x	75,1							
LAmax,1x	77,7							
le niveau équivalent (LAeq) :								
LAeq,23-06h	51,2							
2, 104,20 0011	J 1, Z							

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

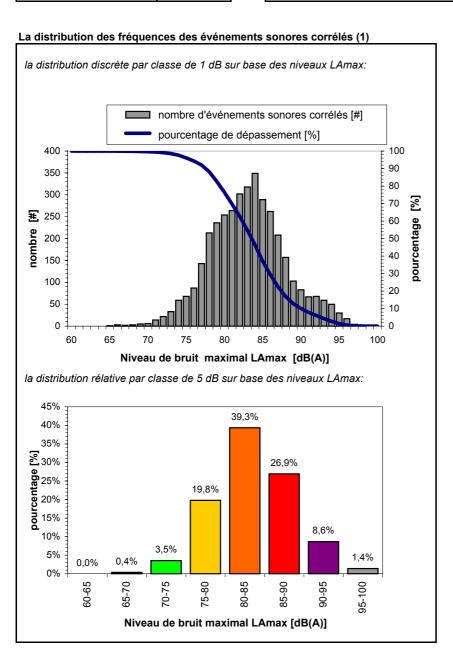
nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
328	329	337	357	366	355	374	254	252	236	267	193
8,1	9,5	9,8	10,0	9,4	8,3	8,8	5,8	5,8	6,0	5,9	5,7
51,4	52,1	52,8	52,4	52,1	51,4	51,5	49,8	49,9	49,6	50,1	49,8

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 42 DIEGEM Rapport Annuel 2003

Données générales

la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	82,2%

Corrélation des événements sonores

le nombre total des événements sonores repérés	3961
le nombre des événements correlés aux passages d'avion	3782
le niveau de corrélation	95.5%

Les valeurs moyennes par nuit (2)

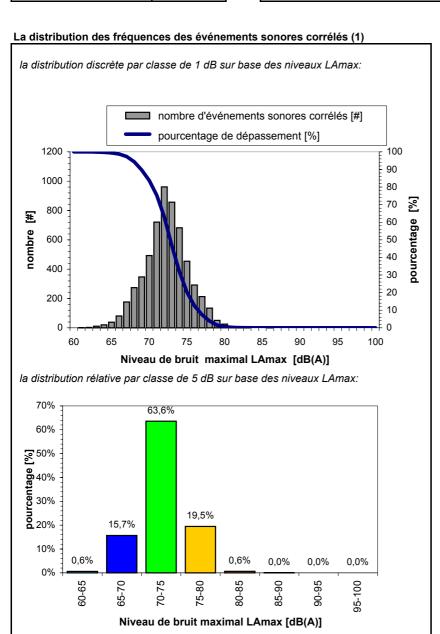
Les valeurs moyennes pa	r nuit (2)
nombre d'événements	12,6
distribution par classe de 5	i dB
sur base des niveaux LAm	
60-65	n.v.t.
65-70	0,0
70-75	0,4
75-80	2,5
80-85	5,0
85-90	3,4
90-95	1,1
95-100	0,2
>= 100	0,0
fréquence de dépassemen	ıt·
(nxLAmax>=X)	
nxLAmax>60	n.v.t.
nxLAmax>65	12,6
nxLAmax>70	12,6
nxLAmax>75	12,1
nxLAmax>80	9,6
nxLAmax>85	4,7
nxLAmax>90	1,3
nxLAmax>95	0,2
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	79,5
LAmax,5x	84,6
LAmax,4x	85,6
LAmax.3x	86,7
LAmax,2x	88,2
LAmax,1x	90,9
le niveau équivalent (LAed	a) :
LAeq,23-06h	61,3

L'évolution mensuelle (2)

jan fev mar avr mai juin jul aout sep oct nov dec nombre d'événements sonores 320 319 363 321 184 443 422 397 374 363 276 corrélés aux passages d'avion nxLAmax>70 11,4 11,0 12,2 13,1 11,2 16,2 13,5 13,2 12,8 12,1 10,8 LAeq,23-06h 61,1 62,0 62,3 61,9 61,3 62,4 60,7 60,9 60,6 60,1 60,2

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 43 ERPS-KWERPS Rapport Annuel 2003

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	88,3%

Corrélation des événements sonores

le nombre total des événements sonores repérés	6533
le nombre des événements correlés aux passages d'avid	on 5873
le niveau de corrélation	89,9%

Les valeurs moyennes par nuit (2)

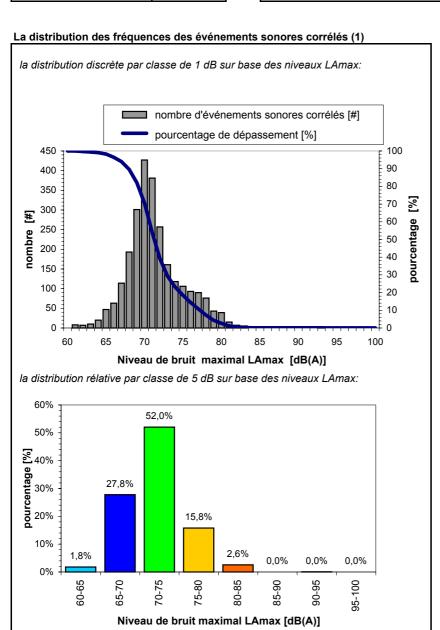
Les valeurs moyennes p	ar nuit (2)
nombre d'événements	18,2
distribution par classe de	5 dB
sur base des niveaux LAr	
60-65	0,1
65-70	2,9
70-75	11,6
75-80	3,6
80-85	0,1
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépasseme	nt·
(nxLAmax>=X)	iic.
nxLAmax>60	18,2
nxLAmax>65	18,1
nxLAmax>70	15,3
nxLAmax>75	3,7
nxLAmax>80	0,1
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	72,5
LAmax,5x	74,3
LAmax,4x	74,8
LAmax,3x	75,4
LAmax,2x	76,2
LAmax,1x	77,4
le niveau équivalent (LA	eq):
LAeg,23-06h	51,4
2. 104,20 00.11	31,4

L'évolution mensuelle (2)

E evolution mensuene (E)												
	jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
nombre d'événements sonores corrélés aux passages d'avion	-	259	396	465	524	593	804	732	648	543	462	447
nxLAmax>70	-	10,6	12,1	12,3	14,4	16,1	20,9	19,7	18,5	15,2	14,0	12,5
LAeq,23-06h	-	49,6	50,5	50,3	51,2	51,1	52,7	52,2	52,2	51,4	52,0	51,1

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 44 TERVUREN Rapport Annuel 2003

Données générales

z cimete generale	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	92,9%

Corrélation des événements sonores

le nombre total des événements sonores repérés	2706
le nombre des événements correlés aux passages d'avion	2581
le niveau de corrélation	95,4%

nombre d'événements	7,6
distribution par classe de s sur base des niveaux LAn	
60-65	0,1
65-70	2,1
70-75	4,0
75-80	1,2
80-85	0,2
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépassement (nxLAmax>=X)	
nxLAmax>60	7,6
nxLAmax>65	7,5
nxLAmax>70	5,4
nxLAmax>75	1,4
nxLAmax>80	0,2
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0

niveau de dépassement :

LAmax,20x

LAmax,10x

LAmax,5x

LAmax,4x

LAmax,3x

LAmax,2x

LAmax,1x

le niveau équivalent (LAeq) :

LAeq,23-06h

0,0

0,0

70,2

71,0

71,9

73,3

76,3

49,5

(LAmax,nx)

Les valeurs moyennes par nuit (2)

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion

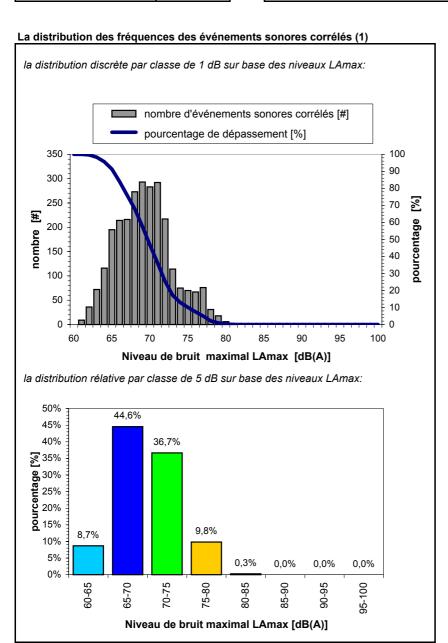
nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
126	142	169	191	60	136	292	357	281	277	275	275
3,0	2,4	3,8	3,6	3,1	3,7	7,2	8,5	7,6	6,9	6,5	6,3
49,3	44,8	46,1	46,2	45,4	46,0	49,9	52,2	51,3	50,9	50,5	50,4

(1) sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

(2) sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité


NMT 45 MEISE Rapport Annuel

Données générales

z cimeco gomerano	
la période d'observation	2003
la période d'évaluation	23-06 h HL
le niveau d'activité	99,0%

Corrélation des événements sonores

Г	le nombre total des événements sonores repérés	2873
	le nombre des événements correlés aux passages d'avion	2679
	le niveau de corrélation	93,2%

Les	va	leurs	mo	yennes	par	nuit	(2))
								-

Les valeurs moyennes p	oar nuit (2)
nombre d'événements	7,4
distribution par classe de	5 dB
sur base des niveaux LA	
60-65	0,6
65-70	3,3
70-75	2,7
75-80	0,7
80-85	0,0
85-90	0,0
90-95	0,0
95-100	0,0
>= 100	0,0
fréquence de dépasseme	ent:
(nxLAmax>=X)	
nxLAmax>60	7,4
nxLAmax>65	6,8
nxLAmax>70	3,5
nxLAmax>75	0,7
nxLAmax>80	0,0
nxLAmax>85	0,0
nxLAmax>90	0,0
nxLAmax>95	0,0
nxLAmax>100	0,0
niveau de dépassement :	
(LAmax,nx)	
LAmax,20x	0,0
LAmax,10x	0,0
LAmax,5x	68,0
LAmax,4x	69,3
LAmax,3x	70,6
LAmax,2x	71,8
LAmax,1x	73,8
le niveau équivalent (LA	eq):
LAeq,23-06h	47,4
	,.

L'évolution mensuelle (2)

nombre d'événements sonores corrélés aux passages d'avion nxLAmax>70

LAeq,23-06h

jan	fev	mar	avr	mai	juin	jul	aout	sep	oct	nov	dec
261	284	301	325	276	203	185	181	184	160	159	160
5,3	6,1	6,5	5,9	4,4	3,2	2,4	1,5	1,6	1,7	1,5	1,5
48,4	48,9	49,8	49,3	48,2	46,8	46,0	45,5	45,7	45,1	45,2	45,2

⁽¹⁾ sur base des niveaux du bruit maximal (LAmax) exprimés en valeurs LAeq,1s,max

⁽²⁾ sur base des événements sonores correlés aux passages d'avion en fonction du niveau d'activité

Partie 4: Evaluation de l'accord de principe du 16 juillet 2002

RAPPORT ANNUEL 2003

base d'évaluation: Accord Fédéral - l'accord de principe du 16 juillet 2002

période d'observation: 2003

nuit - 23-06h HL (heure locale) période d'évaluation: mode de corélation: OFF-LINE

données de vol: CDB - Central Database (BIAC)

	période		ements	Distri	bution	1					,max (_			(2)		
	période												norm	e d'imi	nissio	n (3)		(23-06 h)
LOCALISATION	Niveau d'activité durant la période d'observation [%]	total des événements repérés	nombre des événements correlés aux passages d'avion	9-09	65-70	70-75	75-80	80-85	85-90	90-95	95-100	>100	grenswaarde	geen overschrijding	0-3 dB	3-5dB	> 5 dB	
STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK ST-PWOLUWE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL	99,1% 98,6% 98,7% 99,1% 98,3% 98,8% 96,3% 99,1% 99,8% 97,5% 99,0% 98,9% 98,3% 82,9% 93,4% 97,5% 37,7%	7933 5892 4031 472 3135 5101 761 4867 518 17646 1536 5373 6376 1486 705 1683 613	6508 4572 3574 55 2981 5020 124 3690 462 1690 1382 1451 4079 6261 1309 573 1391 235	1 1 1 3 70 18 29 10	56 1 60 19 123 156 4 189 5 1024 688 779 460 123 303 209 449 67	74 45 128 21 794 2297 47 1380 86 532 587 575 1958 2953 685 322 702	79 352 344 10 1656 2354 40 1735 292 61 73 64 1382 2951 294 38 212 41	88 1285 13000 5 373 206 24 353 78 3 16 3 255 227 26 2 2 5	1076 1770 947 32 6 5 26 1 1 14 7	2992 725 493 2 1 4 3	2096 264 283	46 130 18	- - 83 68 68 68 68 73 68 73 68 73 68 73 68	7 2912 1182 431 6220 1224 469 135 9	20 510 142 584 12 72 83 516 93	7 148 25 261 2 9 16 292 42	21 120 33 175 1 4 5 448 91	67,2 64,8 62,4 31,5 53,6 53,4 39,9 54,8 43,8 44,5 43,1 52,1 52,1 54,3 45,2 39,5 46,2 40,6
HAREN	98,1%	4434	4183		166	958	1951	825	196	78	8	1	78	2474	871	368	470	56,6
EVERE	100,0%	156	122		79	36	4	3					68	48	47	15	12	31,6
KONINGSLO GRIMBERGEN DIEGEM ERPS-KWERPS TERVUREN MEISE	98,5% 96,7% 82,2% 88,3% 92,9% 99,0%	3901 4041 3961 6533 2706 2873	3631 3648 3782 5873 2581 2679	64 61 36 46 233	742 841 14 920 717 1194	1672 1997 134 3735 1343 982	994 571 748 1144 407 263	151 178 1488 37 66 7	8 1018 1	327	53	1	73 78 - 78 68 73	1786 3323 5659 2238	1048 240 197 250	449 75 9	348 10 2 53	51,8 51,2 61,3 51,4 49,5 47,4
	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK ST-PWOLUWE DUSBURG GRIMBERGEN WEMMEL ZAVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL HAREN EVERE KONINGSLO GRIMBERGEN DIEGEM ERPS-KWERPS TERVUREN	STEENOKKERZEEL (1) KORTENBERG DIEGEM 98,6% NOSSEGEM 98,7% EVERE 99,1% STERREBEEK 98,3% KAMPENHOUT 98,8% PERK 96,3% N.O-HEEMBEEK 99,1% ST-PWOLUWE 99,8% ST-PWOLUWE 99,8% GRIMBERGEN 99,0% WEMMEL 2AVENTEM (1) VELTEM (1) VELTEM (1) VELTEM 98,3% WILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL 37,7% HAREN EVERE 100,0% KONINGSLO GRIMBERGEN 96,7% ERPS-KWERPS 88,3% TERVUREN 92,9%	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK STERREBEEK ST-P-WOLUWE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL HAREN EVERE STERREBEEK SR,3% S135 KAMPENHOUT 98,8% S101 98,8% S101 98,3% 761 99,1% 4867 99,1% 4867 99,1% 518 97,5% 1764 99,0% 1536 97,5% 1764 98,9% 1536 3776 1486 98,9% 1536 377 613 HAREN EVERE KONINGSLO GRIMBERGEN DIEGEM ERPS-KWERPS RO,3% 6533 FERVUREN 99,1% 472 98,3% 5101 98,3% 6376 97,5% 1683 37,7% 613	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK ST-P-WOLUWE DUISBURG GRIMBERGEN VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL KONINGSLO GRIMBERGEN DIEGEM MCONTENBERG BRUSSEL STERREBEEK SR,3% S135 S892 4572 98,7% 4031 S572 99,1% 472 55 98,3% 3135 S981 472 55 98,3% 5101 5020 99,8% 5101 5020 99,1% 4867 3690 98,3% 6376 6261 451 452 4434 4183 235 4434 4183 245 256 4441 3648 82,2% 3961 3782 ERPS-KWERPS 88,3% 6533 5873 7ERVUREN 99,1% 7933 6508	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK ST-PWOLUWE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL KONINGSLO GRIMBERGEN DIEGEM MCNINGSLO GRIMBERGEN SROW SROW MCNINGSLO SROW SROW SROW SROW SROW SROW SROW SRO	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98,6% 5892 4572 1 98,7% 4031 3574 1 60 99,1% 472 55 19 STERREBEEK 98,3% 3135 2981 1 123 KAMPENHOUT PERK N.O-HEEMBEEK 99,1% 4667 3690 3 189 97.5% 1764 1690 70 1024 98,1% 4567 3690 3 189 99,8% 518 462 DUISBURG QRIMBERGEN 99,0% 1546 1382 18 688 WEMMEL 2AVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL 100,0% 156 122 79 KONINGSLO GRIMBERGEN 98,1% 4434 4183 166 FVERE 100,0% 156 122 79 KONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 96,7% 4041 3648 61 841 S2,2% 3961 3782 14 ERPS-KWERPS 88,3% 6533 5873 36 920 TERVUREN 92,9% 2706 2581 46 717	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98,6% 5892 4572 1 458 P9,1% 4031 3574 1 60 128 STERREBEEK 99,1% 472 55 19 21 STERREBEEK 98,3% 3135 2981 1 123 794 KAMPENHOUT 98,8% 5101 5020 156 2297 PERK N.O-HEEMBEEK 99,1% 4867 3690 3 189 1380 ST-PWOLUWE 99,8% 518 462 5 86 DUISBURG GRIMBERGEN 99,0% 1546 1382 18 688 587 WEMMEL 2AVENTEM (1) VELTEM 98,3% 6376 6261 123 2953 WILVOORDE MACHELEN 98,3% 6376 6261 123 2953 WILVOORDE MACHELEN 98,9% 1486 1309 303 685 MACHELEN 97,5% 1683 1391 449 702 STROMBEEK-BEVER 97,5% 1683 1391 449 702 STROMBEEK-BEVER 98,1% 4434 4183 166 958 EVERE KONINGSLO GRIMBERGEN 98,1% 4434 4183 166 958 EVERE KONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 GRIMBERGEN 100,0% 156 122 79 36 KONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 GRIMBERGEN 100,0% 156 122 79 36 KONINGSLO GRIMBERGEN 98,5% 3901 3637 64 742 1672 GRIMBERGEN 100,0% 156 122 79 36 KONINGSLO GRIMBERGEN 98,5% 3901 3637 64 742 1672 GRIMBERGEN 100,0% 156 122 79 36 KONINGSLO GRIMBERGEN 98,5% 3901 3637 64 742 1672 GRIMBERGEN 106,3% 3901 3637 64 742 1672 1072 3901 3782 14 134 ERPS-KWERPS 88,3% 6633 5873 36 920 3735 TERVUREN	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98,6% 5892 4572 1 45 352 98,7% 4031 3574 1 60 128 344 99,1% 472 55 19 21 10 STERREBEEK SAMPENHOUT PERK N.O-HEEMBEEK 96,3% 761 124 4 47 40 N.O-HEEMBEEK 99,1% 4867 3690 3 189 1380 1735 ST-PWOLUWE 99,8% 518 462 5 86 292 DUISBURG GRIMBERGEN 99,0% 1546 1382 18 688 587 73 WEMMEL ZAVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL 98,1% 434 4183 166 958 1951 VILVOORDE MACHELEN 98,1% 434 4183 166 958 1951 VILVORRIAN PRIVITED WEMMER 98,1% 4434 4183 166 958 1951 VILVORSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 KONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 KKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 KKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 KKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 RKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 RKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 RKONINGSLO GRIMBERGEN 98,5% 3901 3631 64 742 1672 994 RCHIMBERGEN 98,5% 3901 3631 64 742 1672 994	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98,6% 5892 4572 1 45 352 1285 98,7% 4031 3574 1 60 128 344 1300 99,1% 472 55 19 21 10 5 STERREBEEK 98,3% 3135 2981 1 123 794 1656 373 KAMPENHOUT PERK N.O-HEEMBEEK 96,3% 761 124 4 47 40 24 N.O-HEEMBEEK 97,5% 1764 1690 70 1024 532 61 3 GRIMBERGEN 98,9% 1536 1451 29 779 575 64 3 2AVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL HAREN EVERE 98,1% 4434 4183 EVERE 98,5% 3901 3631 64 742 1672 994 151 102 178 156 122 79 36 4 3 189,1% 1443 4183 EVERE PRS-KWERPS 88,3% 6533 5873 36 920 3735 1144 37 1ERVUREN	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98,6% 5892 4572 1 45 352 1285 1770 98,7% 4031 3574 1 60 128 344 1300 947 EVERE EVERE 99,1% 472 55 19 21 10 5 STERREBEEK 98,3% 3135 2981 1 123 794 1656 373 32 KAMPENHOUT 98,8% 5101 5020 156 2297 2354 206 6 PERK N.O-HEEMBEEK 99,1% 4867 3690 3 189 1380 1735 353 26 ST-PWOLUWE 99,8% 518 462 5 86 292 78 1 DUISBURG GRIMBERGEN 99,0% 1546 1382 18 688 587 73 166 SGRIMBERGEN WEMMEL 2AVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL 37,7% 613 235 67 112 41 14 1 HAREN PRINCE 98,1% 4434 4183 166 958 1951 825 196 EVERE 100,0% 156 122 79 36 4 3 EVERE 88,3% 3901 3631 64 742 1672 994 151 8 ERPS-KWERPS 88,3% 6533 5873 36 920 3735 1144 37 1 TERVUREN 92,9% 2706 2581 46 717 1343 407 66	STEENOKKERZEEL (1) KORTENBERG DIEGEM P9.1% 7933 6508 1 56 74 79 88 1076 2992 P1 98.6% 5892 4572 1 45 352 1285 1770 725 P1 98.7% 4031 3574 1 60 128 344 1300 947 493 P2 PYERE P3 P1,	STEENOKKERZEEL (1) KORTENBERG DIEGEM 98,6% 5892 4572 1 45 352 1285 1770 725 264 NOSSEGEM 98,7% 4031 3574 1 60 128 344 1300 947 493 283 EVERE 99,1% 472 55 19 21 10 5 STERREBEEK 98,3% 3135 2981 1 123 794 1656 373 32 2 KAMPENHOUT 98,8% 5101 5020 156 2297 2354 206 6 1 PERK 99,3% 761 124 4 47 40 24 5 4 N.O-HEEMBEEK 99,1% 4867 3690 3 189 1380 1735 353 26 3 ST.PWOLUWE 99,8% 518 462 5 86 292 78 1 DUISBURG 97,5% 1764 1690 70 1024 532 61 3 GRIMBERGEN 99,0% 1546 1382 18 688 587 73 16 98,9% 1536 1451 29 779 575 64 3 1 ZAVENTEM VELTEM VELTEM VELTEM 99,3% 6376 6261 123 2953 2951 227 7 VILVOORDE 82,9% 1486 1309 303 685 294 26 1 MACHELEN 99,4% 705 573 209 322 38 2 2 STROMBEEK-BEVER BRUSSEL 99,5% 1683 1391 449 702 212 25 3 BRUSSEL 99,5% 3901 3631 64 742 1672 994 151 8 EVERE 100,0% 156 122 79 36 4 3 1 KONINGSLO GRIMBERGEN 99,5% 3901 3631 64 742 1672 994 151 8 SEPS-KWERPS 88,3% 6533 5873 36 920 3735 1144 37 1 FERVUREN 92,9% 2706 2581 46 717 1343 407 66 1	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM 98.6% 5892 4572 1 45 352 1285 1770 725 264 130 NOSSEGEM 99.1% 4031 3574 1 60 128 344 1300 947 493 283 18 EVERE 99.1% 472 55 19 21 10 5 STERREBEEK 99.3% 3135 2981 1 123 794 1656 373 32 2 KAMPENHOUT 96.3% 761 124 4 47 40 24 5 4 4 70 40 24 5 4 70 98.8% 5101 5020 156 2297 2354 206 6 1 99.8% 518 462 5 86 292 78 1 1 123 794 1656 373 32 2 KANDENBERG 99.1% 4867 3690 3 189 1380 1735 353 26 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STEENOKKERZEEL (1) KORTENBERG DIEGEM 98,6% 5892 4572 1 1 45 352 1285 1770 725 264 130 - NOSSEGEM 98,7% 4031 3574 1 60 128 344 1300 947 493 283 18 83 EVERE 99,1% 472 55 19 21 10 5 STERREBEEK 98,3% 3135 2981 1 123 794 1656 373 32 2 668 KAMPENHOUT 98,6% 5802 5101 5020 156 2297 2354 206 6 1 68 N.O-HEEMBEEK 99,1% 4867 3690 3 189 1380 1735 353 26 3 1 78 ST-PWOLUWE 99,8% 518 462 5 86 292 78 1 68 BUSSURG GRIMBERGEN WEMMEL 2AVENTEM (1) VELTEM 98,3% 6376 6261 129 779 575 64 3 1 68 BRUSSEL 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER BRUSSEL 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBERGEN 99,1% 1486 1309 303 685 294 26 3 1 1 78 STROMBERGEN 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBEEK-BEVER 98,1% 1486 1309 303 685 294 26 1 1 78 STROMBERGEN 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBERGEN 99,1% 1486 1309 303 685 294 26 1 1 78 STROMBERGEN 98,1% 1486 1309 303 685 294 26 3 3 1 1 78 STROMBERGEN 98,3% 6533 683 18 83 STROMBERGEN 98,3% 1536 144 143 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1	STEENOKKERZEEL (1) KORTENBERG DIEGEM 98.6% 5892 4572 1 45 352 1285 1770 725 264 130 - NOSSEGEM 99.7% 4031 3574 1 60 128 344 1300 947 493 283 18 83 EVERE 99.1% 472 55 19 21 10 5 STERREBEEK KAMPENHOUT 98.8% 5101 5020 156 2297 2354 206 6 1 68 PERK 96.3% 761 124 4 47 40 24 5 4 68 N.O-HEEMBEEK 99.1% 4687 3690 3 189 1380 1735 353 26 3 1 1 78 2912 ST-P-WOLUWE 99.8% 518 462 5 86 292 78 1 1 68 297 298 68 GRIMBERGEN 99.0% 1546 1382 18 688 587 73 16 68 GRIMBERGEN 99.0% 1546 1382 18 688 587 73 16 68 GRIMBERGEN 99.0% 1546 1382 18 688 587 73 16 68 GRIMBERGEN 99.0% 1546 1382 18 688 587 73 16 73 1182 WEMMEL 2AVENTEM (1) VELTEM 98.3% 6376 6261 123 2953 2951 127 7 83 6220 VILVOORDE 82.9% 1486 1309 303 685 294 26 1 1 78 1224 MACHELEN 97.5% 1683 1391 449 702 212 25 3 68 135 BRUSSEL KONINGSLO 98.5% 3901 3631 64 742 1672 994 151 8 68 9 KONINGSLO 98.5% 3901 3631 64 742 1672 994 151 8 78 323 186 GRIMBERGEN 96.7% 4041 3648 61 841 1997 574 1748 1018 327 53 1-8 EVERE 100.0% 156 122 79 36 4 3 10 82 148 1018 327 53 1-8 EVERE ERPS-KWERPS 88.3% 6533 5873 36 920 3735 1144 37 178 1182 1182 1182 1183 1182 1183 1183 118	STEENOKKERZEEL (1) KORTENBERG DIEGEM 99.1% 7933 6508 1 56 74 79 88 1076 2992 2096 46 - 98.6% 5892 4572 1 45 352 1285 1770 725 264 130 - 98.7% 4031 3574 1 60 128 344 1300 947 493 283 18 83 EVERE 99.1% 472 55 19 21 10 5 STERREBEEK KAMPENHOUT 98.8% 5101 5020 156 2297 2354 206 6 1 1 PERK 99.3% 761 124 4 47 40 24 5 4 68 N.O-HEEMBEEK 99.8% 518 462 5 86 292 78 1 DUISBURG GRIMBERGEN 99.9% 1546 1382 18 688 587 73 16 68 GRIMBERGEN 99.9% 1536 1451 29 779 575 64 3 1 68 GRIMBERGEN 99.9% 1536 6261 123 2953 2951 227 7 WELTEM 99.3% 6376 6261 123 2953 2951 227 7 MACHELEN 99.3% 6376 6261 123 2953 2951 227 7 MACHELEN 99.3% 6376 6261 123 2953 2951 227 7 MACHELEN 99.3% 6376 6261 123 2953 2951 227 7 MACHELEN 99.3% 705 573 209 322 38 2 2 73 68 1 78 1224 72 MACHELEN 99.5% 1683 1391 449 702 212 25 3 68 99 93 HAREN EVERE 99.1% 4434 4183 166 958 1951 825 196 78 8 1 78 2474 871 687 878 3323 240 KONINGSLO 99.5% 3901 3631 64 742 1672 994 151 8 8 78 3323 240 KONINGSLO 99.5% 3901 3631 64 742 1672 994 151 8 8 78 3323 240 KONINGSLO 99.5% 3901 3631 64 742 1672 994 151 8 8 73 37 1786 1048 GRIMBERGEN 99.5% 3901 3631 64 742 1672 994 151 8 8 73 3333 240 KONINGSLO 98.5% 3901 3631 64 742 1672 994 151 8 8 73 37 1786 1048 GRIMBERGEN 99.9% 2706 2581 46 717 1343 407 66 1 1 6 68	STEENOKKERZEEL (1) KORTENBERG 99.1% 7933 6508 1 56 74 79 88 1076 2992 2096 46 - DIEGEM 99.6% 5892 4572 1 45 352 1285 1770 725 264 130 - 98.7% 4031 3574 1 60 128 344 1300 947 493 283 18 83 EVERE 99.1% 472 55 19 21 10 5 STERREBEEK 99.8% 5101 5020 1 156 2297 2354 206 6 1 68 KAMPENHOUT 98.8% 5101 5020 1 156 2297 2354 206 6 1 68 ST-P-WOLUWE 99.8% 518 462 5 86 292 78 1 DIESBURG GRIMBERGEN 99.9% 518 462 5 86 292 78 1 DISBURG GRIMBERGEN 99.9% 1546 1382 18 688 587 73 16 GRIMBERGEN 99.9% 1546 1382 18 688 587 73 16 GRIMBERGEN 99.9% 1546 1382 18 688 587 73 16 GRIMBERGEN 99.9% 1536 1451 29 779 575 64 3 1 VELTEM 98.3% 6376 6261 123 2953 2951 227 7 WELTEM 99.3% 6376 6261 123 2953 2951 227 7 WILVOORDE 82.9% 1486 1309 303 685 294 26 1 STROMBEEK-BEVER 99.7,5% 1683 1391 449 702 212 25 3 BRUSSEL 99.1% 4434 4183 166 958 1951 825 196 78 8 1 78 16 88 47 15 KONINGSLO GRIMBERGEN 99.5% 3901 3631 64 742 1672 994 151 8 GRIMBERGEN 99.7% 4041 3648 61 841 1997 571 178 DIEGEM 82.2% 3961 3782 144 134 748 1488 1018 327 53 - EVERE 99.5% 3653 5873 36 920 3735 1144 37 1 FREVUREN 99.5% 6533 5873 36 920 3755 1144 37 1 FREVUREN 99.5% 6533 5873 36 920 3755 1144 37 1 FREVUREN	STEENOKKERZEEL (1) KORTENBERG DIEGEM 99.1% 7933 6508 1 560 74 79 88 1076 2992 2096 46 - 98.6% 5892 4572 1 1 45 352 1285 1770 725 264 130 - 98.7% 4031 3574 1 60 128 344 1300 947 493 283 18 83 EVERE 99.1% 472 55 19 21 10 5 STEERREBEK 98.3% 3135 2981 1 123 794 1656 373 32 2 2 86.8 KAMPENHOUT 98.8% 5101 5020 156 2297 2354 206 6 1 1 68 68 KAMPENHOUT 98.8% 5101 5020 1 56 2297 2354 206 6 1 1 68 68 N.O-HEEMBEK 99.1% 4867 3690 3 189 1380 1735 353 26 3 1 1 78 2912 510 148 120 ST-PWOLUWE 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 2912 510 148 120 ST-P-WOLUWE 10 99.8% 518 462 5 86 292 78 1 1 78 8122 12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⁽¹⁾ NMT sur le terrain de l'aéroport - combinaison du bruit des avions au sol et en survol

⁽²⁾ approximation: LAeq,1s,max = LASmax ('slow') = LAFmax ('fast') - 2 dB

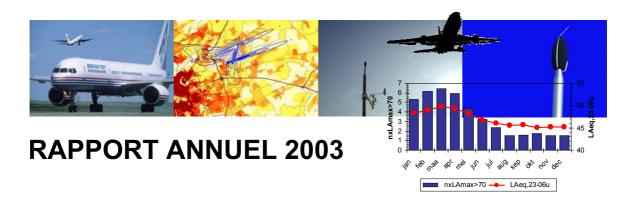
⁽³⁾ évaluation pour l'utilisation du couloir principal (modèle 'Stable Concentrated') - départ de 25R et arrivée apr 25(L)

base d'évaluation: Accord Fédéral - l'accord de principe du 16 juillet 2002

2003 période d'observation:

nuit - 23-07h HL (heure locale) période d'évaluation:

mode de corélation: OFF-LINE


données de vol: CDB - Central Database (BIAC)

		1		Nombre						I Aed	7,1s,m	ax (2)							.Aeq	Atténua	ation du
			év	vénements	Distri	butior	1			LAC	1, 10,	ux (=)		10	Οx	5	x	1	3-07h)		uit
NMT	LOCALISATION	Niveau d'activité durant la période	i ei	total des evenements reperes nombre des événements correlés aux passages d'avion	60-65	65-70	70-75	75-80	80-85	85-90	90-95	95-100	>100	grenswaarde	meting	grenswaarde	meting	grenswaarde	meting	nécessaire suivant le programme d'isolation	nécessaire suivant les mesures
NMT01 NMT02 NMT03 NMT04 NMT06 NMT07 NMT08 NMT09 NMT10 NMT12 NMT12 NMT13 NMT14 NMT15 NMT16 NMT19 NMT16 NMT19 NMT16 NMT19 NMT11 NMT12 NMT12 NMT12 NMT20	STEENOKKERZEEL (1) KORTENBERG DIEGEM NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK ST-PWOLUWE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM (1) VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER BRUSSEL	99,0 98,3 98,7 98,9 98,2 96,2 98,6 97,4 99,1	% 98% 42% 25% 311% 54% 122% 28% 28% 28%	227 145 15 5771 144 539	1 2 4 1 22 70 18 38 18	76 2 72 358 126 164 5 444 17 1040 745 133 422 311 596 108	113 132 146 806 802 2435 57 2328 101 548 617 1005 2198 3134 1125 607 1219 197	94 654 351 1673 2490 47 2537 328 66 84 106 1533 3429 474 116 609 75	120 2163 1312 47 383 268 27 407 92 5 30 4 302 302 39 12 44 21	1232 3092 969 3 333 8 5 29 1	3398 1704 511 1 2 2 4 3	2322 443 309 5	54 163 20	76,0 68,0 63,0 70,0 68,0 62,0	94,3 88,3 80,3 74,5 74,8	90,0 78,0 70,0 65,0 72,0 70,0 65,0	96,2 91,3 85,9 76,4 76,7 77,1 65,5 65,1 68,6 77,1 71,4	55,7 48,0 45,2 51,0 50,8 46,3	67,2 66,5 62,0 46,4 53,1 53,3 39,6 55,4 44,0 44,1 42,9 45,7 54,4 46,4 42,1 48,3 42,2	31,0 23,0 19,2 25,0 24,8 20,3	49,3 43,3 36,0 20,4 27,1 29,5 13,6 29,8 18,0 18,1 16,9 19,7 30,3 21,4 16,1 22,3 16,2
NMT30 NMT31	HAREN EVERE	98,1 100,		90 6979 266 1223	1	513 321	1755 501	2835 332	1410 66	363 2	91	10	2	75,0 52,0	77,4	77,0 54,0	80,7	54,3 33,9	57,8 46,3	30,0 7,9	32,4 20,3
NMT40 NMT41 NMT42 NMT43 NMT44 NMT45	KONINGSLO GRIMBERGEN DIEGEM ERPS-KWERPS TERVUREN MEISE	98,5 96,7 82,1 88,3 92,9 99,0	% 59 % 68 % 76 % 30	6591	196 206 57 151 412	1297 1796 20 1001 848 1770	2480 2639 251 4224 1380 1220	1548 646 1335 1264 418 279	160 180 2514 44 66 8	8 2025 1	451 1	59	1	70,0 73,0 85,0	72,2 70,8 84,6 73,1 65,8	72,0 75,0 87,0	75,2 73,4 87,2 74,7 70,9 69,9	51,0 52,8 63,6 49,8	52,6 51,4 62,7 51,4 49,0 47,5	25,0 28,0 40,0	27,2 25,8 39,6 28,1 23,0 21,5

⁽¹⁾ NMT sur le terrain de l'aéroport - combinaison du bruit des avions au sol et en survol (2) approximation: LAeq,1s,max = LASmax ('slow') = LAFmax ('fast') - 2 dB

Annexe: Distribution des SID nocturnes par mois

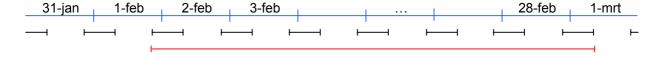
(source: Belgocontrol AMS)

Distribution SID / RWY January 2003; 23:00 - 06:00 Hr LT

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H				2				2
BUL1K			22					22
BUL1L					26			26
BUL1N	105							105
CIV1G						5		5
CIV1K			13					13
CIV1N	65							65
CIV3H				4				4
CIV4L					62			62
CIV6C	3							3
COA1H			1	4				5
ETE1H				6				6
ETE1L					40			40
GIL1N	17							17
LNO1H				4				4
LNO2L					33			33
NIK1G						24		24
NIK1K			3					3
NIK1N	174							174
NUL1K			8					8
NO SID								0
SPI1H				1				1
SPI1L			-		19			19
TOL1H				1				1
TOTAL	364	0	47	22	180	29	0	642

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for January 2003, starts at 23:00 on 01/01/2003 and stops at 06:00 on 01/02/2003).



Distribution SID / RWY february 2003; 23:00 - 06:00 Hr LT

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H			3					3
BUL1K			2					2
BUL1L					28			28
BUL1M					1			1
BUL1N	98							98
BUL1Z	1							1
CIV1K			1					1
CIV1N	60							60
CIV3H				3				3
CIV4L					66			66
CIV6C	1							1
COA1F						1		1
COA1H				2				2
ETE1H				1				1
ETE1L					45			45
ETE1M	1							1
GIL1N	4							4
KOK1F						1		1
LNO2L					61			61
LNO3G								0
NIK1G						3		3
NIK1N	192							192
NO SID					1		6	7
SPI1H				1				1
SPI1L					16			16
TOTAL	357	0	6	7	218	5	6	599

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for february 2003, starts at 23:00 on 01/02/2003 and stops at 06:00 on 01/03/2003).

Distribution SID / RWY March 2003; 23:00 - 06:00 Hr LT

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1L					47			47
BUL1M					1			1
BUL1N	109							109
BUL1Z	2							2
CIV1N	68							68
CIV4L					70			70
CIV6C	1							1
ETE1H				1				1
ETE1L	1				56			57
GIL1N	2							2
LNO2L					44			44
NIK1N	199							199
NO SID	3			1			6	10
SPI1L					19			19
TOL1L					2			2
TOTAL	385	0	0	2	239	0	6	632

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for March 2003, starts at 23:00 on 01/03/2003 and stops at 06:00 on 01/04/2003).

Distribution SID / RWY April 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H			1	6				7
BUL1K			5					5
BUL1L					44			44
BUL1N	112							112
CIV1G						1		1
CIV1K			8					8
CIV1N	55							55
CIV3H				7				7
CIV4L					79			79
CIV6C	1							1
COA1H				3				3
ETE1H				6				6
ETE1L					35			35
GIL1N	10							10
KOK1P	1							1
LNO2L					49			49
LNO3G	1							1
NIK1G						9		9
NIK1N	188							188
NIK1Z	1							1
NO SID		0					0	0
NUL1K			1					1
SPI1L					22			22
TOL1H				1				1
TOTAL	369	0	15	23	229	10	0	646

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for April 2003, starts at 23:00 on 01/04/2003 and stops at 06:00 on 01/05/2003).

Distribution SID / RWY May 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1L					37			37
BUL1N	49							49
BUL2M	60							60
CIV1N	20							20
CIV2M	23							23
CIV4L					93			93
COA4C	3							3
COA4D	68							68
ETE1L					52			52
ETE1M	2							2
GIL1N	1							1
GIL2M	3							3
HEL1C	1							1
LNO2L					52			52
NIK1N	100							100
NIK2M	36							36
NO SID	3							3
SPI1L					16			16
TOL1L					1			1
TOTAL	369	0	0	0	251	0	0	620

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the

previous day (the red line indicates the counted period for May 2003, starts at 23:00 on 01/05/2003 and stops at 06:00 on 01/06/2003).

Distribution SID / RWY June 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1L					39			39
BUL2M	121							121
CIV2M	49							49
CIV4L					36			36
CIV6D	78							78
COA1Z	1							1
COA4C	2							2
COA4D	139							139
ETE1L					81			81
GIL2M	4							4
LNO2L					66			66
NIK2M	68							68
NO SID								0
SPI1L					25			25
TOTAL	462	0	0	0	247	0	0	709

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for June 2003, starts at 23:00 on 01/06/2003 and stops at 06:00 on 01/07/2003).

Distribution SID / RWY July 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1L					46			46
BUL2M	97							97
CIV2M	47							47
CIV4L					4			4
CIV6D	140							140
CIV7C	2							2
COA1Z	1							1
COA4C	1							1
COA4D	160							160
ETE1L					161			161
ETE2M	4							
GIL2M	2							2
LNO2L					78			78
NIK2M	72							72
NIK2Z	1							1
ONT4C	1							1
NO SID								0
SPI1L					23			23
TOTAL	528	0	0	0	312	0	0	840

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for July 2003, starts at 23:00 on 01/07/2003 and stops at 06:00 on 01/08/2003).


Distribution SID / RWY August 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H				1				1
BUL1K			10					10
BUL1L					49			49
BUL2M	16							16
CIV1K			1					1
CIV2M	43							43
CIV3H				5				5
CIV6D	146							146
CIV7C	3							3
COA1H				7				7
COA1Z	2							2
COA4D	139							139
ETE1H				7				7
ETE1L					214			214
ETE2M	2							2
GIL2M	1							1
HEL1H				1				1
LN01H				4				4
LNO2L					57			57
NIK1K			1					1
NIK2M	65							65
NO SID	1				2			3
SPI1H				2				2
SPI1L					36			36
TOL1H			1	2				3
TOTAL	418	0	13	29	358	0	0	818

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for August 2003, starts at 23:00 on 01/08/2003 and stops at 06:00 on 01/09/2003).

Distribution SID / RWY September 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1L					33			33
BUL2M	3							3
CIV2M	16							16
CIV4L					1			1
CIV6D	145							145
CIV7C	15							15
COA4D	164							164
ETE1L					157			157
GIL2M	2							2
LNO2L					78			78
NIK2M	76							76
NO SID	1							1
SPI1L					32			32
TOTAL	422	0	0	0	301	0	0	723

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for September 2003, starts at 23:00 on 01/09/2003 and stops at 06:00 on 01/10/2003).

Distribution SID / RWY October 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H				2				2
BUL1K			9					9
BUL1L					46			46
BUL2M	16							16
BUL2Z	1							1
CIV1G						1		1
CIV1K			4					4
CIV3H				8				8
CIV3M	35							35
CIV6D	120							120
COA1H				9				9
COA4C	1							1
COA4D	152							152
ETE1H				7				7
ETE1L					160			160
ETE2M	3							3
GIL2M	2							2
LNO1H				6				6
LNO2L					68			68
NIK1G						9		9
NIK1K			1					1
NIK2M	66							66
NO SID								0
NUL1K			2					2
SPI1H				4				4
SPI1L					32			32
TOL1H				4				4
TOTAL	396	0	16	40	306	10	0	768

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for October 2003, starts at 23:00 on 01/10/2003 and stops at 06:00 on 01/11/2003).

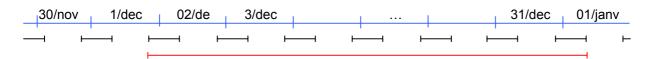
Distribution SID / RWY November 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
BUL1H				1				1
BUL1K			1					1
BUL1L					41			41
BUL2M	12							12
BUL2Z	1							1
CIV3H				3				3
CIV3M	37							37
CIV6D	96							96
COA1H				4				4
COA4D	139							139
ETE1H				3				3
ETE1L					142			142
ETE2M	1							1
GIL2M	7							7
LNO2L					62			62
NIK1G						1		1
NIK2M	63							63
NO SID								0
RIT1L					5			5
RIT1M	5							5
SOP1L					11			11
SOP1M	5							5
SPI1H				1				1
SPI1L					28			28
SPI1M	2							2
TOTAL	368	0	1	12	289	1	0	671

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for November 2003, starts at 23:00 on 01/11/2003 and stops at 06:00 on 01/12/2003).


Distribution SID / RWY December 2003; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
CIV3M	43							43
CIV4L					1			
CIV6D	89							89
CIV7C	1							
COA4D	134							134
LNO2L					69			69
NIK2M	73							73
NO SID								0
RIT1L					45			45
SOP1C	1							
SOP1L					148			148
SOP1M	4							4
SPI1L					17			17
TOTAL	345	0	0	0	280	0	0	625

Remark: A night is always calculated from 23:00 - 0600 Hr LT.

For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for December 2003, starts at 23:00 on 01/12/2003 and stops at 06:00 on 01/01/2004).

