
Surveillance du bruit - Brussels Airport

Rapport annuel 2006

Evaluation du bruit d'immission engendré par le trafic aérien de Brussels Airport en 2006 sur base de mesures de bruit des stations de mesures de bruit gérées par 'Brussels Airport', 'Bruxelles Environnement–IBGE' et le département 'Leefmilieu, Natuur en Energie' (LNE) de l'administration Flamande, en collaboration avec 'Belgocontrol' et l'Administration Fédérale (SPF) 'Mobilité et Transport'.

CONTENU

- 1. Introduction
- 2. Généralités
 - 2.1. Stations de mesure
 - 2.2. Analyse et traitement
 - 2.3. Taux d'activité et taux de corrélation
 - 2.4. Conventions
 - 2.5. Grandeurs d'appréciation
- 3. Modifications des procédures de vol, de l'utilisation des pistes et des routes en 2006
- 4. Analyse des données de vols
 - 4.1. Nombre de mouvements
 - 4.2. L'utilisation des pistes
 - 4.2.1. Evolution annuelle de l'utilisation des pistes en 2004-2006
 - 4.2.2. Evolution mensuelle de l'utilisation des pistes en 2006
 - 4.3. Les procédures de vol
 - 4.4. Les types d'appareils
- 5. Résumé des résultats des mesures
 - 5.1. Résumé et comparaison avec des résultats des calculs en INM
 - 5.2. Evolution des grandeurs acoustiques
 - 5.3. Comparaison des résultats de mesures des régions
- 6. Conclusion

ANNEXES

- A Analyse des données de trafic aérien (source: CDB Brussels Airport)
 - A.1 Analyse de l'utilisation des pistes
 - A.2 Répartition des routes de départs ou SID's
 - A.3 Apercu des types d'avions
- B Statistiques des vols au décollage (source: Belgocontrol AMS)
- C Résultats détaillés des mesures par NMT
- D Distributions L_{Amax} par NMT

1. Introduction

Les accords de principe des 22 février et 16 juillet 2002, conclus entre le Gouvernement fédéral, le Gouvernement flamand et le Gouvernement de la Région de Bruxelles-Capitale relatifs à une politique cohérente en matière de nuisances sonores nocturnes concernant l'aéroport Brussels Airport, instaurent une Commission d'Avis, définissent sa composition et en fixent les missions.

Dès sa création, et afin de mener à bien les missions qui lui ont été confiées, cette Commission d'Avis a mis en place un système de collecte, de mise en commun et de centralisation tant des données trafic gérées par Belgocontrol que des données acoustiques issues des réseaux de mesure de bruit gérés par (The) Brussels Airport (Company), par LNE et par Bruxelles Environnement – IBGE.

Ainsi, outre la prise en charge des diverses missions évoluant au gré des demandes formulées par le Comité de Concertation (des ministres fédéraux et régionaux), cette Commission d'Avis s'est employée à produire des rapports annuels visant à dresser un constat acoustique de la situation nocturne sur base de l'ensemble des données trafic et acoustiques disponibles. Le dernier rapport annuel porte sur l'année 2004.

A défaut de nouveaux mandats, les travaux de la Commission d'Avis ont été suspendus. La dernière réunion s'est ainsi tenue en juin 2005. Toutefois, la mise en commun et le traitement des données trafic et acoustiques n'ont jusqu'a présent pas été interrompus.

Estimant opportun d'assurer une certaine continuité des travaux de mise en commun et d'analyse des données acoustiques et trafic, les membres de la Commission d'Avis chargés de la gestion des réseaux de mesure de bruit et des bases de données du trafic aérien ont pris l'initiative de constituer un groupe de travail technique, œuvrant sur base volontaire et en toute indépendance. N'étant lié à aucun mandat, ce groupe de travail s'est défini un cadre de travail, visant notamment à prendre en compte les données diurnes et nocturnes, et s'est fixé comme objectifs :

- d'assurer la collecte et la mise en commun des données trafic et des données acoustiques des différents réseaux de mesure de bruit ;
- d'établir et d'analyser les corrélations entre les données acoustiques et trafic ;
- de produire et commenter les résultats des traitements ;
- de globaliser l'ensemble des constats dans un rapport annuel ;
- de mettre le rapport annuel à disposition via le site WEB de chaque institution.

Le présent rapport constitue le deuxième document – après le rapport 2005 - élaboré dans ce contexte et porte sur l'ensemble des données collectées durant **l'année 2006**.

2. Généralités

2.1. Stations de mesure

Les stations de mesures (fixes, semi-mobiles et mobiles) actives en 2006, sont reprises sur la carte suivante (figure 1). Les données détaillées concernant ces stations sont rassemblées dans le tableau général (tableau 1).

Toutes les stations figurant sur la carte n'ont pas fait l'objet d'un traitement dans ce rapport.

Les stations NMT 01 (Steenokkerzeel), NMT 3-2 (Humelgem-Airside), NMT 15, 15-2 et 15-3 (Zaventem) et NMT 23 (Steenokkerzeel) sont situées sur les terrains de l'aéroport et/ou dans les environs immédiats des pistes et des installations aéroportuaires. Les données d'immission des événements corrélés contiennent donc aussi bien la contribution du bruit de fond que des survols ou une combinaison des deux. De plus, la mise en concordance avec des mouvements d'avions particuliers n'est pas toujours fiable. Pour ces raisons, les données de ces stations de mesure ont été considérées comme moins pertinentes pour l'analyse des données d'immission des mouvements spécifiques (atterrissages ou décollages) et n'ont donc pas été reprises dans ce rapport.

Pour des raisons purement techniques, seules les données de deux stations de mesures de la Région bruxelloise (NMT 30 en 31) ont été traitées dans ce rapport. En effet, les données des autres stations fixes de la Région bruxelloise (NMT 34-2, 36, 38, 39-2, 51-1, 51-2 en 52) ont un format incompatible avec celui des stations de mesures de Brussels Airport et du département « Leefmilieu, Natuur en Energie » (LNE) de l'administration flamande.

Trois stations de mesure, gérées par l'exploitant de l'aéroport, NMT 02 (Kortenberg), NMT 11 (St. Pieters-Woluwe) et NMT 15 (Zaventem), ont été déplacées dans le courant de l'année 2006. Les déplacements sont relativement limités et ont été opérés pour des raisons techniques opérationnelles.

La station de mesure NMT02, à proximité de la balise radio BUB, dans le prolongement de la piste 07 R a été déplacée d'environ 16 m vers le nord-ouest tandis que la station NMT 11 a été déplacée d'environ 22 m vers le sud. Après une installation temporaire (NMT 15-2) avenue Borreveld, la station NMT 15 (Zaventem) initialement située sur le terrain de l'aéroport a été déplacée dans la rue Steenokkerzeel à environ 285 m au sud-ouest de sa position d'origine. Cette dernière précision est uniquement donnée à titre d'information car, comme précisé ci-dessus, la station (NMT 15) ne fait pas l'objet de ce rapport.

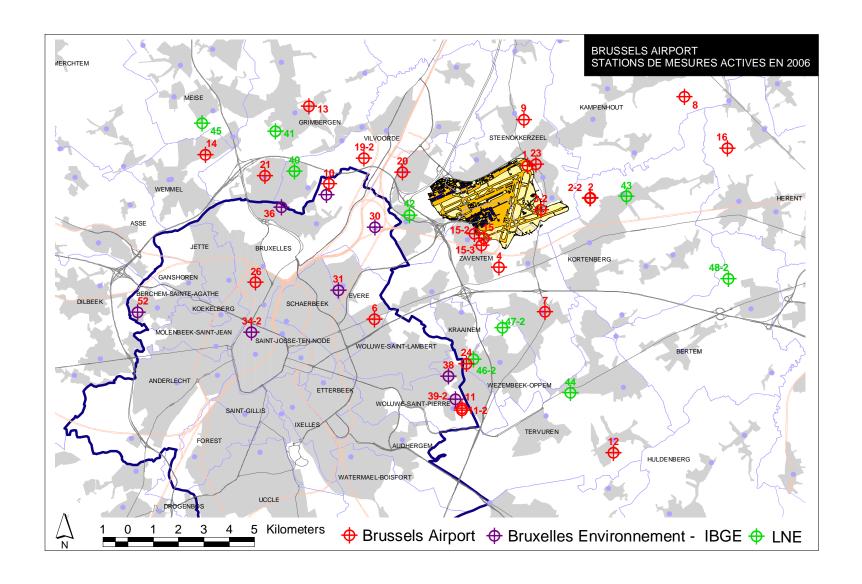


Figure 1 : représentation des stations de mesure actives en 2006

identification NMT	localisation	adresse	coordinées (X) (Lambert72)	coordinées (Y) (Lambert 72)	exploitant	type (*)	début de la période d'observation	fin de la période d'observation	
)1	STEENOKKERZEEL	Knooppunt banen 25R en 20 Airside	159503	178265	Brussels Airport	F	1991		(1
)2	KORTENBERG	DVOR BUB aan de Kortenbergsesteenweg	161985	176932	Brussels Airport	F	1991	2006.11.24	
)2-2	KORTENBERG	DVOR BUB aan de Kortenbergsesteenweg	161972	176923	Brussels Airport	F	2006.11.24		
3-2	HUMELGEM -Airside	Airside, poort aan P5	160037	176459	Brussels Airport	F	2004.06.22		(1
)4	NOSSEGEM	Middle marker baan 02 achter de steenfabriek	158373	174167	Brussels Airport	F	1991		
)6	EVERE	Leuvensteenweg 970, Buurtspoorwegen	153406	172050	Brussels Airport	F	1991		
)7	STERREBEEK	Kerkdries 22, Vrije gesubsideerde Basisschool	160144	172294	Brussels Airport	F	1991		
)8	KAMPENHOUT	Outer marker baan 25R aan de Paddezijpstraat	165724	180956	Brussels Airport	F	1991		
9	PERK	Domein van Perk N.V. Kasteel	159375	180081	Brussels Airport	F	1991		
10	N.O-HEEMBEEK	Bruynstraat, Militair Hospitaal	151890	177402	Brussels Airport	F	1991		
11	WOLUWE-ST. PIERRE	Outer marker baan 02, Avenue des Dames Blanches	156919	168491	Brussels Airport	F	1991	2006.06.07	
11-2	WOLUWE-ST. PIERRE	Outer marker baan 02, Avenue des Dames Blanches	156919	168469	Brussels Airport	F	2006.06.07		
12	DUISBURG	Merenstraat, Watertorens, Vlaamse Watermaatschap.	162902	166732	Brussels Airport	F	1991		
13	GRIMBERGEN	18, Rijkshoekstraat	150465	180648	Brussels Airport	F	1991		
14	WEMMEL	Zijpstraat 14-16, Hoger Rijkstechnisch Instituut voor TO	146778	178630	Brussels Airport	F	1991		
15	ZAVENTEM	LOC-shelter 25L Airside	157774	175307	Brussels Airport	F	1991	2006.08.18	(1
15-2	ZAVENTEM	Borreveldlaan 10, Zaventem	157425	175492	Brussels Airport	М	2006.07.27	2006.10.04	(1
15-3	ZAVENTEM	Steenokkerzeelstraat 56, Zaventem	157684	175036	Brussels Airport	F	2006.12.12		(1
16	VELTEM	Outermarker 25L aan de Haachtstraat	167396	178908	Brussels Airport	F	1991		Π`
19-2	VILVOORDE	Paolapaviljoen, Domein Drie Fonteinen	153056	178523	Brussels Airport	SM	2005.07.01		
20	MACHELEN	14, G. Ferréstraat	154572	177959	Brussels Airport	SM	2003.01.11		
21	STROMBEEK-BEVER	31, Sint-Amandsplein	149141	177824	Brussels Airport	SM	2003.01.09		
	STEENOKKERZEEL	"Zandbak" tussen Vanfrachenlaan en Nieuwstraat	159838	178288	Brussels Airport	SM	2004.08.31		(1
24	KRAAINEM	Politiecommissariaat, F. Kinnenstraat - Kraainem	157101	170320	Brussels Airport	SM	2004.06.02		Τ`
	BRUXELLES	Ecole "Spes", 173, Rue de Molenbeek - 1020 Bruxelles (Laeken)	148770	173557	Brussels Airport	SM	2004.03.05		
30	HAREN (BXL1)	Rue Cortenbach - 1130 Bruxelles (Haren)	153480	175780	BIM / IBGE	F	1997.04.01		
31	EVERE (EVE1)	Rue J-B Mosselmans - 1140 Evere	152038	173253	BIM / IBGE	F	1996.01.01		
34-2	BRUXELLES	47, Rue de Houblon - 1000 Bruxelles	148109	171195	BIM / IBGE	F	2003.11.05		(2
36	LAEKEN	28, Av. De la Wannecourter - 1020 Bruxelles (Laeken)	149779	176567	BIM / IBGE	F	2003.08.01		(2
38	WOLUWE-ST. PIERRE	38, Av. des Cyclistes - 1150 Woluwé-Saint-Pierre	156383	169831	BIM / IBGE	F	2003.12.04		(2
39-2	WOLUWE-ST. PIERRE	Corniche Verte - 1150 Woluwé-Saint-Pierre	156890	169055	BIM / IBGE	F	2004.05.05		(2
10	KONINGSLO	189A, Streekbaan (politiemeldpost), Vilvoorde	150301	178013	LNE	F	2001.10.05		1
11	GRIMBERGEN	Domein 'Ter Wilgen', Brusselsesteenweg - Grimbergen	149551	179614	LNE	F	2002.09.27		
12	DIEGEM	40, Zaventemsesteenweg, Machelen	154852	176259	LNE	SM	2003.01.29		
13	ERPS-KWERPS	Dekenijstraat (plantsoen nabij EHBO-lokaal), Kortenberg	163416	176998	LNE	SM	2003.02.07		
	TERVUREN	21, Leuvensesteenweg (site 'Groenplan')	161216	169147	LNE	F	2002.04.04		
15	MEISE	Nationale Plantentuin van België (Domein van Bouchout)	146634	179945	LNE	SM	2003.01.01		
	WEZEMBEEK-OPPEM	Ecole St. Georges, F. Kinnenstraat	157375	170504	LNE	SM	2005.10.18		
	WEZEMBEEK-OPPEM	50, Rue du Cimitière	158516	171760	LNE	SM	2004.05.28		
18-2	BERTEM	Meilaarsveld (radarstation Belgocontrol)	167464	173712	LNE	SM	2006.01.04		
51-2	N.O-HEEMBEEK	347, Trassersweg (Nospilifs) - 1120 Bruxelles (Neder-Over-Heembeek)	151568	177063	BIM / IBGE	F	2005.01.29		(2
52	BERCHEM-STEAGATH	25, Rue Mathieu Pauwels - 1082 Berchem-Sainte-Agathe	144092	177003	BIM / IBGE	F	2003.01.29		(2

(1) station de mesure située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol) station de mesure non-traîtée

station fixe station mobile

Tableau 1: Liste des stations de mesure actives en 2006

2.2. Analyse et traitement

Les résultats repris dans ce rapport sont basés sur les événements acoustiques corrélés aux vols, collectés par les réseaux de mesures de Brussels Airport, Bruxelles Environnement-IBGE et LNE. Il s'agit d'événements acoustiques qui répondent aux limites de détections et qui sont ensuite corrélés à un vol spécifique via le système de corrélation automatique géré par Brussels Airport.

Les limites de détection des événements enregistrés par les stations de LNE et de Brussels Airport sont assez strictes. Un événement est pris en compte si un seuil prédéfini est dépassé suffisamment longtemps (10 secondes). Les seuils ne sont pas identiques pour toutes les stations. Le seuil des stations de mesure de LNE est en général 5 dB inférieur à celui des stations de mesures de Brussels Airport, ce qui a un impact important sur le nombre d'événements acoustiques enregistrés.

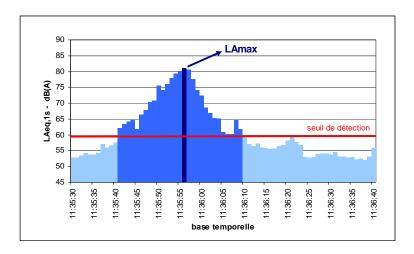


Figure 2 : enregistrement d'événements (exemple)

Les stations de mesures en Région bruxelloise, gérées par Bruxelles Environnement-IBGE n'ont pas recours à un seuil prédéfini. La détection d'évènements ne s'opère pas au niveau de la station de mesure mais sur base d'une analyse et d'un traitement du signal relevé en continu, par lequel les événements acoustiques sont isolés et mis en corrélation avec un vol spécifique sur base des données du trafic aérien. Les données transmises par la Région bruxelloise sont donc des événements acoustiques qui ont fait l'objet d'un traitement préliminaire et qui peuvent être assimilés à des vols spécifiques.

La base de données des stations de mesures LNE et de Bruxelles Environnement-IBGE sont envoyées mensuellement par les régions dans un format de données compatible. Ces données sont introduites par Brussels Airport dans le "Noise Monitoring Systeem" (NMS) de l'aéroport afin d'être corrélées avec les données de vol et traces radar disponibles.

La corrélation d'un événement acoustique spécifique avec un mouvement d'avion est faite sur base d'un critère de distance. Un vol peut seulement être corrélé avec un événement acoustique dans le cas où la distance entre le plot radar correspondant moment du niveau maximum de l'événement et la position de la station est plus petite qu'une valeur prédéfinie. Cette distance qui défini une demisphère autour de la station de mesure est appelée « rayon de corrélation » et est propre à chaque station de mesure.

1

La corrélation effectuée n'est pas absolue. Il est donc possible que des événements définis soient attribués à tort à des mouvements d'avions et inversement. Afin de minimiser le risque de corréler à tort un événement sonore causé par une autre source qu'un passage d'avion, seuls les événements sonores de maximum 75 secondes ont été retenus.

_

Depuis 2004, différentes améliorations ont été appliquées parmi lesquelles la disponibilité des traces radar jusqu'à une altitude de 5000 pieds au lieu de 4000 pieds. Grâce à l'adaptation en 2005 de l'algorithme de corrélation et, pour certaines stations, de l'augmentation du rayon de corrélation, la corrélation a été améliorée pour certains points de mesure.

La méthode appliquée est la même que celle appliquée aux données de l'année 2005 ayant fait l'objet du rapport précédent. Les données corrélées ont ensuite été traitées, analysées et consignées dans un rapport par le département LNE.

2.4 Taux d'activité et taux de corrélation

Le taux d'activité mentionné dans ce rapport représente le pourcentage de l'année durant lequel les stations étaient active pendant la période d'observation considérée. Il représente la fraction de l'année durant laquelle la station était en fonctionnement et complètement opérationnelle. Des interruptions de courte ou de longue durée dans l'acquisition des données peuvent éventuellement être la conséquence de pannes techniques, d'interventions de service, etc ... Le taux d'activité a été pris en compte dans la détermination des résultats moyens annuels.

Le tableau 2 donne un aperçu général du taux d'activité par station de mesure (NMT). Le tableau contient d'autres données telles que le nombre total d'événements enregistrés et le nombre total d'événements corrélés. Le rapport des deux donne le pourcentage de corrélation. Ce pourcentage de corrélation peut varier fortement d'un point de mesure à l'autre et est dépendant de divers facteurs.

Les facteurs en rapport avec l'efficacité globale de l'algorithme de corrélation tels que le rayon de corrélation adapté, la disponibilité des traces radar pour la corrélation automatique des vols, ... sont évidemment importants. Par ailleurs, le taux de corrélation dépend également du nombre d'événements enregistrés.

Pour les stations de LNE et de Brussels Airport, un paramètre de mesure dont l'influence sur le nombre total d'événements enregistrés est importante est le seuil de détection préprogrammé². Plus bas est ce seuil de détection, plus élevé sera le nombre d'événements enregistrés. La présence d'autres sources de bruit que le bruit des avions (bruits parasites), la situation géographique par rapport aux trajectoires empruntées par les avions, ... ont, en combinaison avec le seuil de détection, un impact important sur le nombre total d'événements enregistrés et par conséquent sur le taux de corrélation.

² Pour les deux réseaux, le seuil de détection est combiné avec une durée minimale de dépassement de 10 secondes (condition événementielle) et une durée minimale de franchissement de 5 secondes (détermination de la fin d'un événement)

Tableau 2 : nive	eau d'activité	e, niveau de seuil et po	urcei	ntage de co	rrélation (2	24h)		
							Ø	
EXPLOITANT	NMT	LOCALISATION		Taux d'activité [%]	Niveau de seuil [dB(A)]	Le nombre total des événements sonores repérés	Le nombre des événements correlés aux passages d'avion	Pourcentage de corrélation [%]
EXPLOITANT	INIVII	LOCALISATION						
Brussels Airport	1 2/2-2 3 4 6 7 8 9 10 11/11-2 12 13 14 15/15-2/15-3 16 19-2 20 21 23	STEENOKKERZEEL KORTENBERG HUMELGEM -Airside NOSSEGEM EVERE STERREBEEK KAMPENHOUT PERK N.O-HEEMBEEK WOLUWE-ST. PIERRE DUISBURG GRIMBERGEN WEMMEL ZAVENTEM VELTEM VILVOORDE MACHELEN STROMBEEK-BEVER STEENOKKERZEEL	(*)	98.9% 98.3% 99.7% 98.9% 95.4% 97.9% 99.6% 99.6% 99.6% 99.6% 97.0% 99.0% 99.6% 99.6%	70 65 65 65 65 65 66 65 66 65 66 65 66 65 66 66	- 85095 - 31602 20448 10464 34146 7860 31547 18261 6105 3690 7845 - 59117 14128 9783 13611	- 77336 - 26702 17706 7937 33116 3973 27444 16707 3227 1902 5041 - 57820 12373 9044 12379	- 90.9% - 84.5% 86.6% 75.9% 97.0% 50.5% 87.0% 91.5% 52.9% 51.5% 64.3% - 97.8% 87.6% 92.4%
	23 24	KRAAINEM		99.6%	65	- 27583	- 25085	90.9%
	26	BRUXELLES		99.9%	65	9040	2107	23.3%
		=						
BIM / IBGE	30 31	HAREN EVERE		99.3% 99.7%	(**) (**)	72952 33623	70325 32660	96.4% 97.1%
	<u> </u>	1		00.170	\ /	00020	02000	J.11/0
LNE	40 41	KONINGSLO GRIMBERGEN		99.9% 98.3%	60 60	38613 26062	27308 18736	70.7% 71.9%
	42	DIEGEM		95.6%	70/65 (***)	66838	65227	97.6%
	43	ERPS-KWERPS		94.3%	60	79913	73400	91.8%
	44 45	TERVUREN		98.9%	60	19575	11758	60.1%
	45 46-2	MEISE WEZEMBEEK-OPPEM		94.0% 99.9%	60 60	11807 49575	6392 41693	54.1% 84.1%
	46-2 47-2	WEZEMBEEK-OPPEM		99.9% 99.9%	60 60	49575 31886	41693 25382	84.1% 79.6%
	48-2	BERTEM		99.0%	60	10895	6502	59.7%

⁴⁸⁻² BERTEM 99.0% 60 10895

(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Etant donné que le déplacement de la station NMT 02 dans le courant de l'année 2006 était limité, les données des deux points de mesure NMT 02 et NMT 02-2 ont été évalués conjointement et, dans un souci de simplicité, ont été présenté comme une seule station de mesure. La même approche a été appliquée à la station NMT 11 de Woluwe-Saint-Pierre.

^(**) non-appliquable (***) le niveau de seuil / détection est différente pour la période de jour (70 dB(A)) et la période de nuit (65 dB(A))

2.4. Conventions

Toutes les heures mentionnées dans ce rapport sont exprimées en heure locale (LT).

La délimitation des périodes mensuelles définies et appliquées par les autorités aéroportuaires (BIAC et Belgocontrol) ont été utilisées lors de l'élaboration des moyennes mensuelles reprises dans ce rapport. Il s'ensuit que la période nocturne 00h-07h est allouée au jour qui précède. Sur cette base, la période mensuelle (nocturne) est délimitée comme suit: la première nuit du mois commence à 23h le 1e jour du mois concerné et la dernière nuit se termine à 07h le matin du 1e jour du mois suivant 3.

Ce principe est illustré dans la figure 3 pour un mois arbitrairement choisi (septembre).

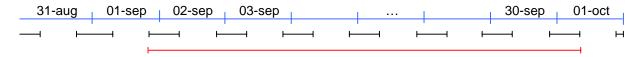


Figure 3 : Définition des périodes nocturnes mensuelles (illustration : septembre)

Les données analysées dans ce rapport pour 2006 concernent la période du 01 janvier 2006 07 h au 01 janvier 2007 07 h.

2.5. Grandeurs d'appréciation

Les grandeurs caractéristiques prises en compte et évaluées dans ce rapport sont d'une part le niveau de pression acoustique équivalent (symbole : \mathbf{L}_{Aeq}) et d'autre part la fréquence de dépassement d'un niveau de pression acoustique maximum \mathbf{L}_{Amax} X (symbole : $\mathbf{nxL}_{Amax>x}$).

Niveau de pression acoustique équivalent (symbole : L_{Aeq})

Le bruit des avions est un bruit très fluctuant qui se compose d'une succession d'événements acoustiques individuels. Pour pouvoir rendre compte de la contribution sonore de bruits fluctuants, il est d'usage de moyenner le niveau d'énergie acoustique sur une période d'observation déterminée T.

Pour tenir compte de la sensibilité fréquentielle de l'ouïe humaine, une pondération fréquentielle est ordinairement appliquée aux niveaux mesurés. La pondération la plus utilisée est la pondération A (indice : A). La pondération A est acceptée internationalement pour qualifier la contribution sonore causée par le bruit des avions.

³ Pour une autre période de 24h applicable (période diurne: 06-23h00 / période nocturne: 23-06h), la période mensuelle a été délimité de la même façon avec comme seule adaptation que l'heure de fin ou de début est 06h au lieu de 07h. Ceci est surtout pertinent dans ce rapport pour des données concernant les statistiques de vols qui sont basées sur les périodes « opérationnelles » appliquées par les autorités aéroportuaires.

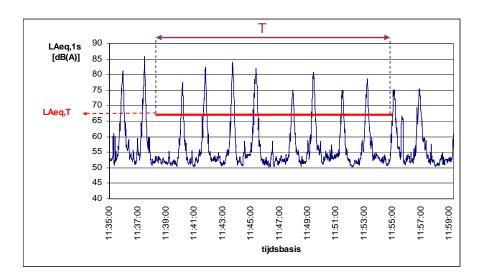


Figure 4 : présentation graphique du L_{Aeq.T}

Le niveau de pression acoustique équivalent pondéré A (symbole: L_{Aeq,T}) est le niveau de pression acoustique d'un bruit constant qui sur la même période contient exactement la même énergie que le bruit fluctuant original. C'est une « moyenne énergétique » du niveau de pression acoustique sur une période T et doit être considéré comme le niveau de pression acoustique constant dont l'énergie est équivalente à la contribution de tous les événements acoustiques durant la période d'observation T considérée.

La période d'observation T comprend le plus souvent une période d'évaluation précise (jour, soir, nuit) délimitées conformément à ce qui est imposé dans des règlementations existantes (plus particulièrement conditions de permis, directive européenne 2002/49/CE,...)

Par exemple : le niveau de pression acoustique équivalent, particulier pour les périodes diurnes et nocturnes, et les grandeurs moyennes annuelles fixées dans le cadre de la directive européenne « bruit ambiant » 2002/49/CE L_{day}, L_{evening} en L_{night} pour, respectivement les périodes de jour, soirée et nuit (07-19h, 19-23h, 23-07h).

Les niveaux de pression acoustique équivalents pour des périodes spécifiques d'évaluation peuvent être combinés en une « combinaison de niveaux de pression acoustique équivalents ». Pour rendre compte du caractère plus dérangeant des événements qui surviennent durant des périodes plus sensibles, ceux-ci peuvent être « pénalisés » en pondérant les niveaux de pression acoustique équivalents. Par exemple les indicateurs suivants:

L_{den}: Le niveau de pression acoustique équivalent pondéré A, tel que défini dans la directive européenne « bruit ambiant » 2002/49/CE, concerne une année entière, avec une pénalité 5 dB (A) pour les niveaux durant la période de soirée (19-23h) et de 10 dB(A) pour les niveaux durant la période nocturne (23-07h)., suivant la formule ci-dessous

$$L_{den} = 10 \log \frac{1}{24} \left(12x10^{\frac{L_{day}}{10}} + 4x10^{\frac{(L_{evening} + 5)}{10}} + 8x10^{\frac{(L_{night} + 10)}{10}} \right)$$

Le niveau « jour-nuit » est un niveau de pression acoustique équivalent pondéré A dans lequel les niveaux nocturne entre 23 h et 06 h sont augmentés de 10 dB(A). Ce paramètre est basé sur une division de la journée « opérationnelle », comme celle appliquée à l'aéroport.

• Fréquences de dépassement

L'impact d'un événement acoustique isolé peut être caractérisé par le niveau de pression acoustique maximal (symbole : L_{Amax}). Les techniques de mesure appliquées aux stations autours de l'aéroport permettent l'enregistrement d'un niveau de pression acoustique chaque seconde (symbole : $L_{Aeq,1s,max}$), comme représenté à la figure 2.

D'après les valeurs mesurées des L_{Amax} de tous les événement corrélés, il est possible de déterminer statistiquement combien de fois une valeur précise X est dépassée en moyenne par jour ($nxL_{Amax} > X$)

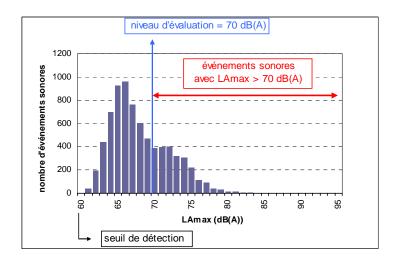


Figure 5 : Exemple d'une distribution des L_{Amax} en classes de 1 dB(A)

La figure 5 montre un exemple de distribution des L_{Amax} des événements corrélés aux passages d'avions par classe de 1 dB(A). L'exemple montre une distribution typique pour une station de mesure avec valeurs mesurées disponibles pour des L_{Amax} supérieurs au seuil de détection prédéfini de 60 dB(A). L'**Annexe D** montre des distributions détaillées en fonction du niveau L_{Amax} pour les stations faisant l'objet de ce rapport.

La fréquence moyenne de dépassement pour une valeur égale à 70 dB(A) (ou niveau d'évaluation) est représenté par le symbole $nxL_{Amax}>70^{-4}$ et est basée sur une évaluation du nombre moyen d'événements par jour dont le $L_{Amax}>70$ dB(A). Les valeurs $nxL_{Amax}>70$ peuvent également être déduites des distributions cumulées du nombre moyen d'événements acoustiques corrélés par jour, comme représenté à la figure 6.

-

⁴Dans la littérature, le symbole NA70 ('Number Above 70') est souvent utilisé. Les courbes iso ou courbes qui relient les points ayant une même fréquence de dépassement supérieure à 70 dB(A), ont été représenté par le symbole 'freq.70 dans le rapport présentant les contours annuels de bruit pour l'aéroport Brussels Airport.

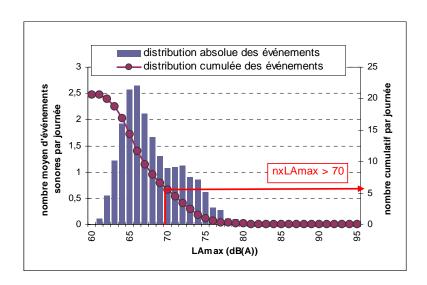


Figure 6 : illustration de l'indicateur nxL_{Amax}>70, déduit de la distribution cumulée

Ce rapport présente les résultats moyens annuels de l'indicateur nxL_{Amax} > 70 pour la période diurne (07-23h) et la période nocturne (23-07h).

3. Modifications des procédures de vol, de l'utilisation des pistes et des routes en 2006

L'utilisation préférentielle des pistes pour les mouvements provenant de et vers l'aéroport est défini dans l' « Aeronautical Information Publication » (AIP). Depuis l'introduction du plan de dispersion en 2004 et les adaptations ultérieures en 2005 faisant suite à différents jugements, il y a eu peu de changements. L'utilisation préférentielle des pistes, en concordance avec le « plan de dispersion », est donnée depuis le début de l'année 2006 par le tableau ci-dessous (tableau 3). L'orientation et la désignation des pistes de l'aéroport est donné à la figure 7.

Preferentieel I	oaangebruik	Période de jour		Période de nuit		
(tijdsaanduidir	ng in lokale tijd)	06:00 tot 16:59	06:00 tot 16:59 17:00 tot 22:59		03:00 tot 05:59	
Ma, 06:00 -	Décollage	25R	•	20	07R / 07L ⁽¹⁾	
Di, 05:59	Atterrissage	25R/25L		25R/25L	20	
Di, 06:00 -	Décollage	25R		25R / 20	-1	
Wo, 05:59	Atterrissage	25R/25L		25L /25R		
Wo, 06:00 -	Décollage	25R		25R	07R / 07L ⁽¹⁾	
Do, 05:59	Atterrissage	25R/25L		25R / 25L 20		
Do, 06:00 -	Décollage	25R		25R / 20		
Vrij, 05:59	Atterrissage	25R/25L		25R / 25L		
Vrij, 06:00 -	Décollage	25R		20	07R / 07L ⁽¹⁾	
Zat, 05:59	Atterrissage	25R / 25L		25R / 25L	20	
Zat, 06:00 -	Décollage	25R		25L		
Zon, 05:59	Atterrissage	25R/25L		25R		
Zon, 06:00 -	Décollage	20	25R	25R / 20		
Ma, 05:59	Atterrissage	25R/25L		25R/25L		

Tableau 3 : utilisation préférentielle des pistes (AIP 22/12/2005)

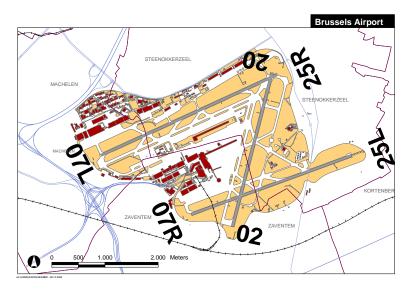


Figure 7 : La configuration des pistes à l'aéroport Brussels Airport

A l'inverse, jusqu'à l'introduction du plan de dispersion (avril 2004), la répartition des atterrissages sur les pistes 25R et 25L n'était pas spécifiées dans les AIP.⁵

La configuration des pistes publiée dans les AIP n'est pas prépondérante dans le choix des pistes lors de circonstances suivantes :

- composantes de vent définies dépassées;
- surface de la piste glissante;
- visibilité insuffisante;
- piste alternative demandée par plusieurs pilotes pour des raisons de sécurité;
- annonce de turbulences ou de tempêtes;
- piste préférentielle indisponible (travaux, entretiens,...).

Le 21 avril 2006, le conseil des ministres a approuvé une modification du plan de dispersion en rapport avec l'utilisation des pistes le samedi. Il a ainsi été décidé que le samedi, les départs se feraient préférentiellement sur la piste 25R jusque 15h et sur la piste 20 à partir de 15h. La décision du conseil des ministres a cependant été suspendue le 11 mai 2006 par le Conseil d'Etat et le plan de dispersion tel qu'appliqué fin 2005 a été conservé. Depuis lors, l'utilisation des pistes le samedi est modifiée hebdomadairement par NOTAM suivant la décision du conseil des ministres. A l'exception des deux premiers samedis du mois de septembre (et durant le mois d'août, voir ci-dessous), une instruction du conseil des ministre est à chaque fois donnée afin que, durant la période jour, les départs se fassent sur la piste 25R jusque 15h et sur la piste 20 à partir de 15h. Pour les samedis pour lesquels cette instruction est manquante, le plan de dispersion est utilisé tel que publié dans les AIP, suivant le tableau 3. ⁶

Durant le mois d'août 2006 le plan de dispersion a été suspendu en raison de travaux sur la piste 25L.

_

Avant l'introduction du plan de dispersion, durant la période nuit (23-06h) les atterrissages devaient avoir lieux sur la piste 25R pour les vols provenant du nord et de l'ouest et sur la pistes 25L pour les vols provenant du sud et de l'est. Durant la période jour (06-23h) la piste 25L était utilisée préférentiellement pour les atterrissages mais la piste 25R pouvait également être utilisée en cas de deux atterrissages simultanés ou quand la direction du trafic aérien l'imposait.

⁶ Source: Contours de bruit aux alentours de l'aéroport Brussels Airport – Année 2006, rapport P.V. 4993, du. 19.04.2007, Laboratorium voor Akoestiek en Thermische Fysica, KU Leuven.

4. Analyse des données de vols

Le présent chapitre synthétise les différentes données de vols disponibles et les éléments qui ont une influence sur les niveaux de bruit enregistrés tels que le nombre de mouvements, l'utilisation des pistes, l'utilisation des procédures et les types d'appareils utilisés. Cette analyse repose sur les informations de vols rassenblées dans la « Central Database » (CDB) gérée par The Brussels Airport Company. Une analyse détaillée des données vols de la CDB est disponible à l'annexe A..

Pour les statistiques officielles de Belgocontrol, il est fait référence à l'annexe B. Ces données complémentaires se rapportent seulement aux vols en partance et donnent de plus amples renseignements à propos de la fréquence des routes suivies ou SID's.

4.1 Nombre de mouvements

Au préalable, l'évolution du nombre de mouvements à Brussels Airport est donnée pour les 30 dernières années, d'une part sous la forme du nombre total de mouvements (figure 8) et d'autre part pour le nombre de mouvements effectués durant la nuit (figure 9).

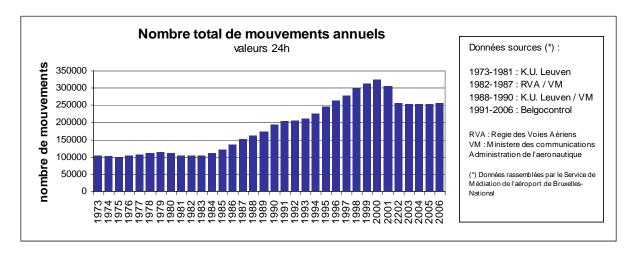


Figure 8 : évolution historique du nombre total de mouvements annuel (1973-2006)

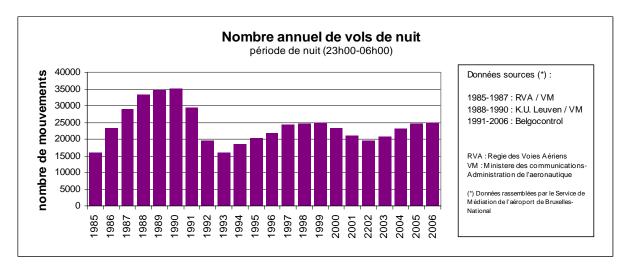
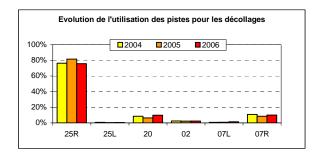


Figure 9 : évolution historique du nombre annuel de vols de nuit (1985-2006)

En 2006 **254.754** mouvements ont été opérés à Brussels Airport dont **24.759** mouvements entre 23h et 06h. (bron: CDB-data).

4.2 L'utilisation des pistes


4.2.1 Evolution annuelle de l'utilisation des pistes en 2004-2006

L'évolution de l'utilisation annuelle moyenne pour la période 2004-2006 du nombre total de mouvements et du nombre de mouvements de nuit (période 23-06h) est donnée dans les tableaux et figures suivants. ⁷.

Tableau 4 : répartition des décollages et des atterrissages par piste (valeurs 24 h)

Décollages	Piste	2004	2005	2006
	25R	76.4%	81.6%	75.8%
	25L	0.7%	0.3%	0.4%
	20	8.6%	6.4%	9.8%
	02	2.6%	2.2%	2.4%
	07L	0.8%	0.9%	1.4%
	07R	11.0%	8.5%	10.1%

Atterrissages	Piste	2004	2005	2006
	25R	24.1%	27.0%	32.3%
	25L	59.7%	61.2%	52.5%
	20	3.2%	1.2%	2.4%
	02	13.0%	10.5%	12.4%
	07L	0.0%	0.1%	0.1%
	07R	0.0%	0.0%	0.3%

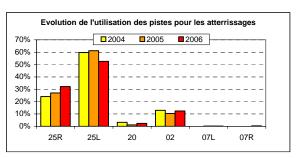
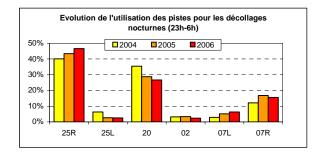
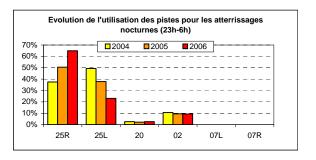




Tableau 5 : répartition des décollages et des atterrissages nocturnes (23-06h) par piste

Décollages	Piste	2004	2005	2006	
	25R	40.1%	43.4%	46.5%	
	25L	6.3%	2.7%	2.6%	
	20	35.4%	28.7%	26.7%	
	02	3.2%	3.3%	2.3%	
	07L	2.9%	5.1%	6.3%	
	07R	12.1%	16.8%	15.6%	

Atterrissages	Piste	2004	2005	2006
	25R	37.5%	50.6%	64.9%
	25L	49.3%	37.9%	23.1%
	20	2.6%	2.2%	2.6%
	02	10.6%	9.4%	9.4%
	07L	0.0%	0.0%	0.0%
	07R	0.0%	0.0%	0.0%

L'usage des pistes sur base annuelle présente de faibles variations.

Toutefois, pour la répartition des atterrissages sur les pistes parallèles 25L et 25R, il y a tout de même des différences importantes. Le nombre d'atterrissages sur la piste 25R croît proportionnellement tandis que le nombre d'atterrissages sur la piste 25L diminue. Cette évolution est encore plus marquée pour les mouvements de nuits (23-06h).

Exceptionnellement, les pistes 07L et 07R ont été utilisées pour les atterrissages : piste 07L, le 16 août 2006, piste 07R, les 8 mai, 10 juin, 2 juillet 16 juillet, 16 juillet et 19 juillet 2006.

⁷ Source : CDB (2005/2006) et Direction Générale Transport Aérien (2004)

4.2.2 Evolution mensuelle de l'utilisation des pistes en 2006

Les variations dans l'utilisation des pistes au cours de l'année 2006 s'expliquent principalement par les facteurs suivants:

- la variation des conditions climatiques au cours de l'année a un impact sur la disponibilité des pistes:
- 2) la variabilité du trafic (répartition horaire et intensité du trafic) a un impact sur l'utilisation des pistes;
- 3) la fermeture de la piste 25L/07R au mois d'août 2006 explique l'utilisation limitée de cette piste durant le mois d'août (atterrissages sur la piste 25L et départs de la piste 25R)

Les figures 10 et 11 présentent l'évolution mensuelle du nombre total de mouvements et le nombre de mouvements nocturnes (23-06h) par pistes (atterrissages/décollages).

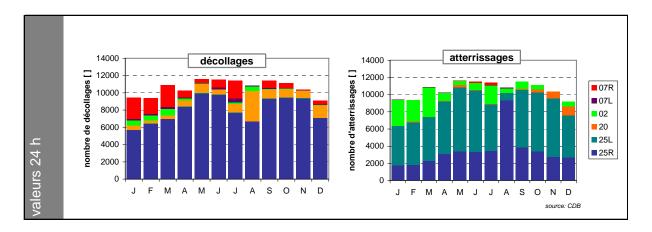


Figure 10 : Evolution mensuelle du nombre total de mouvements par piste (par 24h)

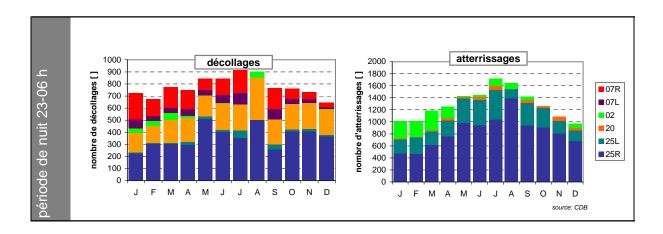


Figure 11 : Evolution mensuelles du nombre de mouvements de nuit par piste (entre 23 et 06h)

Les figures 12, 13 et 14 montrent les évolutions mensuelles moyennes par période et par type de mouvement (arrivée ou départ) suivant les périodes définies par défaut pour le calcul de l'indicateur L_{den} de la directive européenne 2002/49 du 25 juin 2002 relative à la gestion du bruit dans l'environnement.

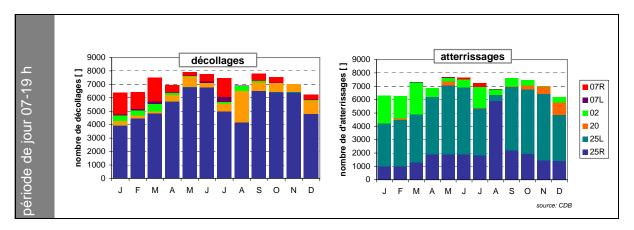


Figure 12 : Evolution mensuelle du nombre de mouvement par piste pour la période jour (07-19h)

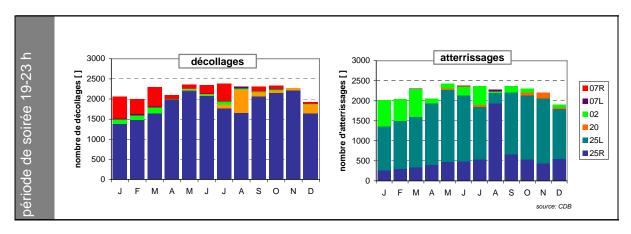


Figure 13 : Evolution mensuelle du nombre de mouvement par piste pour la période soir (19-23h)

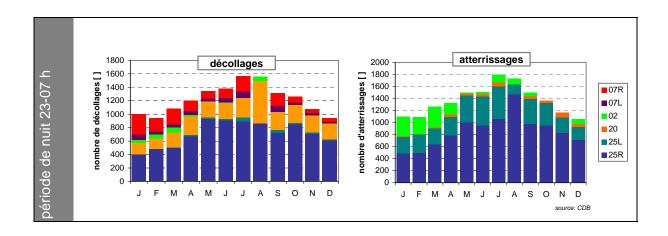
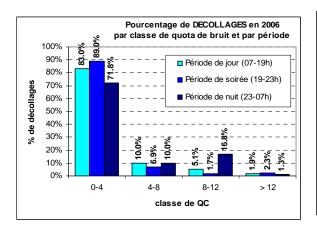


Figure 13 : Evolution mensuelle du nombre de mouvement par piste pour la période nuit (23-07h)

4.3. Les procédures de vol

Le nombre de vols par SID en 2006 entre 06h et 23h, entre 23h et 06h est repris en **annexe A.2** (Brussels Airport CDB) et **annexe B** (Belgocontrol AMS).


En ce qui concerne les routes (SID's) il y a eu peu de modifications dans le courant de l'année 2006 : seulement une réécriture générale des SID's en raison d'une adaptation du nord magnétique et la mise en service de la balise REMBA mais étant donné la position précédente HUL ceci n'a pas de conséquence sur les immissions de bruit aux stations faisant l'objet du présent rapport.

4.4. Les types d'avions

Les types d'avions utilisés ont également un impact sur les mesures de bruit. Tous les types d'avions utilisés en 2006, avec leur quota de bruit (QC) **moyen** par mouvement (décollage/atterrissage), sont repris en **annexe A.3**.

Le quota de bruit de chaque appareil est calculé pour le décollage et pour l'atterrissage sur la base des données de certification acoustique. Le quota de bruit permet de donner une indication du bruit à la source. Plus le quota de bruit d'un appareil est élevé, plus les valeurs de certification de cet appareil sont élevées. Le bruit réellement émis dépend néanmoins également d'autres facteurs tels que le taux de chargement de l'appareil, la procédure de décollage ou d'atterrissage utilisée, les conditions météorologiques,...

Le quota de bruit est limité à 12 entre 23h et 06h et à 24 entre 06h et 07h conformément à l'arrêté ministériel du 3 mai 2004. Les vols militaires, certains vols diplomatiques, les vols humanitaires et les vols s'effectuant dans des circonstances exceptionnelles sont exemptés de cette restriction.

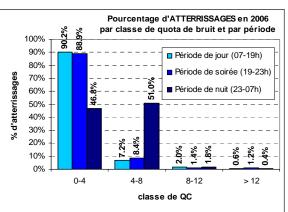


Figure 15 : Répartition des quota de bruit par mouvement pour la période de jour (07-19h), la période de soirée (19-23h) et la période de nuit (23-07h) - source : Central Database (CDB)

Le nombre de vols est beaucoup plus élevé la journée que la nuit avec des différences au niveau des types d'avions utilisés.

La flotte d'avions qui opèrent à Brussels Airport est assez spécifique surtout durant la période nocturne (26-06h). 55% de tous les mouvements sont effectués par des avions du type Airbus A300-B4 (ICAO-code A30B) et Boeing 757-200 (ICAO-code B752). Ces deux types d'appareils sont utilisés pour près de 70% des départs durant la nuit.

5. Résumé des résultats des mesures

Les résultats des mesures proviennent de la corrélation des vols opérée par le Noise Monitoring System (NMS), géré par l'exploitant de l'aéroport, et sont rassemblés ci-après sous forme de tableaux. Les indicateurs acoustiques utilisés pour caractériser la situation acoustique aux différents points de mesures sont les suivants:

- L_{den}
- L_{night}
- nxL_{Amax}>70, 07-23h (période jour)
- nxL_{Amax}>70, 23-07h (période nuit)

L'annexe C reprend de manière détaillées les résultats d'indicateurs supplémentaires spécifiques (L_{day}, L_{evening}, L_{night}, L_{DN}, L_{Aeq,06-23u}, L_{Aeq,23-06u},....), l'évolution mensuelle des indicateurs étudiés et la distribution des niveaux maximum de bruit par classe de 5 dB. Cette annexe reprend aussi une comparaison entre les données mesurées relatives à l'année 2005 et pour les indicateurs nocturnes (L_{night} et nxL_{Amax>70, 23-07h}) aux années 2003, 2004 et 2005.

L'indicateur nxL_{Amax>70} est une valeur issue de la distribution des niveaux maximum de bruit. Cette valeur peut être directement lue à partir des distributions cumulées des niveaux maximum de bruit. La valeur de ce paramètre nxLAmax>70 est très sensible et fortement dépendant de la forme de la distribution des niveaux maximum de bruit et ce en particulier aux alentours du niveau de 70 dB(A).

Pour info, l'annexe **D** reprend la distribution détaillée des niveaux maximum de bruit donnés en fonction de l'utilisation des pistes ou du type de mouvements (arrivée/départ).

5.1. Résumé et comparaison avec les résultats des calculs d'INM

Les résultats sont repris ci-après sous forme de tableaux.

Le tableau reprend, pour chaque indicateur, la comparaison avec les valeurs des contours de bruit calculés à l'aide du modèle INM⁸ version 6.0c. Ces résultats calculés se retrouvent aussi partiellement dans le rapport des contours de bruit ⁹ réalisé par le « Laboratorium Akoestiek en Thermische Fysica (ATF), K.U. Leuven » à la demande de Brussels Airport.

Cette étude comparative ne permet pas de se prononcer sur la précision du modèle de calcul utilisé. Elle donne seulement une indication sur la comparabilité des valeurs mesurées et calculées aux différents points de mesure. Les résultats des calculs sont basés sur la contribution du bruit incident tandis que les résultats des mesures de bruit sont toujours influencés par les circonstances spécifiques locales, et donc des incertitudes supplémentaires inhérentes aux mesures (aveugles) (influence du bruit de fond, les limitations en matière de la corrélation aux vols, à la contribution des réflexions liées à la configuration des lieux, etc....).

Les résultats relatifs aux indicateurs acoustiques étudiés sont précédés et complétés des résultats pour le niveau L_{Aeq,24h} repris également dans le rapport des contours 2006 qui donne une première indication globale au sujet de la comparabilité des mesures et des calculs.

⁸ INM: Integrated Noise Model, mis à disposition par la Federal Aviation Administration (FAA) des Etats-Unis

⁹ Contours de bruit aux alentours de l'aéroport Brussels Airport – Année 2006, rapport P.V. 4993, du. 19.04.2007, Laboratorium voor Akoestiek en Thermische Fysica, KU Leuven.

Tableau 6 : résultats pour LAeq,24h

							_	
				Taux		q,24h	L	
		1		d'activité	mesuré	calculé	L	différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM		INM-NMS
						-	_	
Brussels Airport	1	STEENOKKERZEEL	(*)	98.9%	-	-		-
	2 / 2-2	KORTENBERG		98.3%	69.0	66.9		-2.1
	3	HUMELGEM -Airside	(*)	99.7%	-	-		-
	4	NOSSEGEM		98.9%	65.3	63.1		-2.2
	6	EVERE		95.4%	51.8	49.9		-1.9
	7	STERREBEEK		98.4%	51.3	49.3		-2.0
	8	KAMPENHOUT		97.9%	56.0	55.0		-1.0
	9	PERK		99.6%	49.0	50.4		1.4
	10	N.O-HEEMBEEK		99.4%	55.0	54.1		-0.9
	11 / 11-2	WOLUWE-ST. PIERRE		99.6%	52.0	51.6		-0.4
	12	DUISBURG		98.8%	42.9	46.8		3.9
	13	GRIMBERGEN		99.6%	41.6	45.6		4.0
	14	WEMMEL		98.8%	45.8	46.9		1.1
	15/15-2/15-3	ZAVENTEM	(*)	80.6%	-	-		-
	16	VELTEM		97.0%	57.2	55.7		-1.5
	19-2	VILVOORDE		99.0%	50.9	52.0		1.1
	20	MACHELEN		99.6%	51.2	53.8		2.6
	21	STROMBEEK-BEVER		99.6%	50.5	50.3		-0.2
	23	STEENOKKERZEEL	(*)	99.6%	-	-		-
	24	KRAAINEM		99.6%	53.3	53.0		-0.3
	26	BRUXELLES		99.9%	45.8	46.9		1.1
	•					•	_	
BIM / IBGE	30	HAREN		99.3%	60.2	58.6		-1.6
	31	EVERE		99.7%	52.3	50.3		-2.0
LNE	40	KONINGSLO		99.9%	52.8	51.6		-1.2
	41	GRIMBERGEN		98.3%	48.2	47.3		-0.9
	42	DIEGEM		95.6%	65.2	64.5		-0.7
	43	ERPS-KWERPS		94.3%	55.8	54.9		-0.9
	44	TERVUREN		98.9%	49.2	48.3		-0.9
	45	MEISE		94.0%	44.5	44.1		-0.4
	46-2	WEZEMBEEK-OPPEM		99.9%	55.8	54.8		-1.0
	47-2	WEZEMBEEK-OPPEM		99.9%	51.8	50.3		-1.5
	48-2	BERTEM		99.0%	44.7	43.6		-1.1
(*) NINAT -: (_				_	

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

A l'exception de quelques stations (NMT 12, 13 en 20), les différences entre les mesures et les calculs restent limitées à 2 dB(A).

Une explication possible concernant les écarts importants aux stations NMT 12 en 13 est donnée dans le rapport relatif aux contours de bruit de l'année 2006 : les niveaux de bruit produits par les passages d'avions sont comparables aux niveaux du seuil de déclenchement des stations de mesures. En conséquence, une partie des vols ne fait pas toujours l'objet d'un enregistrement d'un événement acoustique au niveau de la station de mesure.

T-61		-1	Landards (
Tableau 7	: result	ats pour	Lnight

				Taux		ight	
				d'activité	mesuré	calculé	différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	INM-NMS
Brussels Airport	1	STEENOKKERZEEL	(*)	98.7%	-	-	-
	2 / 2-2	KORTENBERG		98.1%	64.3	61.1	-3.2
	3	HUMELGEM -Airside	(*)	99.6%	-	-	-
	4	NOSSEGEM		98.8%	64.0	59.7	-4.3
	6	EVERE		95.1%	46.5	44.1	-2.4
	7	STERREBEEK		98.3%	52.3	47.6	-4.7
	8	KAMPENHOUT		97.8%	55.9	54.0	-1.9
	9	PERK		99.5%	44.7	45.5	0.8
	10	N.O-HEEMBEEK		99.2%	52.2	48.8	-3.4
	11 / 11-2	WOLUWE-ST. PIERRE		99.5%	49.1	46.9	-2.2
	12	DUISBURG		98.7%	43.5	43.2	-0.3
	13	GRIMBERGEN		99.5%	34.3	38.3	4.0
	14	WEMMEL		98.6%	41.7	41.5	-0.2
	15/15-2/15-3	ZAVENTEM	(*)	80.6%	-	-	-
	16	VELTEM	Ì	97.3%	52.2	50.1	-2.1
	19-2	VILVOORDE		98.9%	48.0	46.2	-1.8
	20	MACHELEN		99.4%	46.3	48.6	2.3
	21	STROMBEEK-BEVER		99.7%	48.1	45.4	-2.7
	23	STEENOKKERZEEL	(*)	99.6%	-	-	-
	24	KRAAINEM	Ì	99.7%	49.7	47.7	-2.0
	26	BRUXELLES		99.7%	40.4	39.4	-1.0
	•						
BIM / IBGE	30	HAREN		99.0%	55.8	51.5	-4.3
	31	EVERE		99.6%	48.3	44.2	-4.1
	•		-				
LNE	40	KONINGSLO		99.9%	49.8	46.8	-3.0
	41	GRIMBERGEN		98.2%	45.1	42.2	-2.9
	42	DIEGEM		95.6%	61.4	58.1	-3.3
	43	ERPS-KWERPS		94.2%	51.9	49.6	-2.3
	44	TERVUREN		98.9%	49.2	45.5	-3.7
	45	MEISE		93.9%	40.7	38.7	-2.0
	46-2	WEZEMBEEK-OPPEM		99.9%	52.4	50.0	-2.4
	47-2	WEZEMBEEK-OPPEM		99.9%	50.7	49.8	-0.9
	48-2	BERTEM		99.0%	42.3	38.5	-3.8
(*) NMT cituón cur o		errain de l'aéroport (combinai	202 4				

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

La comparaison entre les valeurs calculées et mesurées montre que le modèle de calcul INM produit presque systématiquement une valeur inférieure. Ceci a déjà été constaté dans le cadre des rapports annuels de 2004 et 2005. Une explication partielle a été avancée dans le rapport des contours de bruit de 2005. Ces déviations systématiques proviendraient de la contribution spécifique des avions du type Boeing 757 (B757), un type d'avion fréquemment utilisé par le principal opérateur nocturne. Ce type d'avion est généralement considéré dans la banque de données du modèle de calcul INM 6.0c comme étant moins bruyant que le type réellement utilisé par les opérateurs de nuit.

Pour certains points de mesure (NMT 12, 13 en 20) - comme constaté précédemment dans le rapport annuel de 2005 - la correspondance entre mesure et calcul est meilleure ou l'écart est dans l'autre sens. Ceci est une conséquence possible de la combinaison de deux aspects différents : d'une part, la sous estimation dans INM (valeur calculée trop basse) et d'autre part, l'influence du seuil de détection relativement élevé sur le nombre d'événements acoustiques (valeur mesurée trop faible).

Tableau 8 : résultats pour Lden

				Taux		len		
	1	I		d'activité	mesuré	calculé		férence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	IN	M-NMS
	T						_	
Brussels Airport	1	STEENOKKERZEEL	(*)	98.9%	-	-		-
	2 / 2-2	KORTENBERG		98.3%	72.9	70.4		-2.5
	3	HUMELGEM -Airside	(*)	99.7%	-	-		-
	4	NOSSEGEM		98.9%	70.8	67.4		-3.4
	6	EVERE		95.4%	55.4	53.4		-2.0
	7	STERREBEEK		98.4%	58.3	54.4		-3.9
	8	KAMPENHOUT		97.9%	62.3	60.7		-1.6
	9	PERK		99.6%	52.9	54.1		1.2
	10	N.O-HEEMBEEK		99.4%	59.6	57.7		-1.9
	11 / 11-2	WOLUWE-ST. PIERRE		99.6%	56.6	55.4		-1.2
	12	DUISBURG		98.8%	49.6	51.1		1.5
	13	GRIMBERGEN		99.6%	44.8	48.8		4.0
	14	WEMMEL		98.8%	49.7	50.4		0.7
	15/15-2/15-3	ZAVENTEM	(*)	80.6%	-	-		-
	16	VELTEM		97.0%	61.1	59.3		-1.8
	19-2	VILVOORDE		99.0%	55.6	55.5		-0.1
	20	MACHELEN		99.6%	55.1	57.5		2.4
	21	STROMBEEK-BEVER		99.6%	55.3	53.9		-1.4
	23	STEENOKKERZEEL	(*)	99.6%	_	_		-
	24	KRAAINEM	` '	99.6%	57.6	56.6		-1.0
	26	BRUXELLES		99.9%	49.5	49.9		0.4
		2.10712220		33.375		.0.0		0
BIM / IBGE	30	HAREN		99.3%	64.2	61.7		-2.5
	31	EVERE		99.7%	56.4	53.6		-2.8
	_							
LNE	40	KONINGSLO		99.9%	57.3	55.4		-1.9
	41	GRIMBERGEN		98.3%	52.7	51.0		-1.7
	42	DIEGEM		95.6%	69.3	67.8		-1.5
	43	ERPS-KWERPS		94.3%	60.0	58.5		-1.5
	44	TERVUREN		98.9%	55.4	52.9		-2.5
	45	MEISE		94.0%	48.6	47.6		-1.0
	46-2	WEZEMBEEK-OPPEM		99.9%	60.2	58.6		-1.6
	47-2	WEZEMBEEK-OPPEM		99.9%	57.3	56.4		-0.9
	48-2	BERTEM		99.0%	49.6	47.0		-2.6
/*\ NIMT cituée cur e		tarrain de l'aéranart (cambin	_					-

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Le niveau L_{den} est une combinaison de niveaux acoustiques équivalents. Il est particulièrement influencé par le niveau nocturne (indicateur L_{night}) pour lequel une pénalité de 10 dB(A) est appliquée. Les constatations en rapport avec l'indicateur L_{night} restent donc valables pour l'indicateur L_{den} , avec comme conséquence des valeurs mesurées plus élevées que les valeurs calculées, pour la plupart des points de mesure.

Tableau 9 : résultats pour nxLAmax>70, 07-23h (période de jour)

				Taux	nxLAn	nax>70	
				d'activité	mesuré	calculé	différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM	INM-NMS
	-	_				-	
Brussels Airport	1	STEENOKKERZEEL	(*)	99.1%	-	-	-
	2 / 2-2	KORTENBERG		98.5%	199.4	204.1	4.7
	3	HUMELGEM -Airside	(*)	99.8%	-	-	-
	4	NOSSEGEM		98.9%	61.3	64.7	3.4
	6	EVERE		95.6%	38.5	18.2	-20.3
	7	STERREBEEK		98.6%	14.8	10.9	-3.9
	8	KAMPENHOUT		97.9%	59.5	66.1	6.6
	9	PERK		99.7%	9.1	7.8	-1.3
	10	N.O-HEEMBEEK		99.7%	60.1	51.0	-9.0
	11 / 11-2	WOLUWE-ST. PIERRE		99.6%	37.4	34.1	-3.4
	12	DUISBURG		99.0%	3.9	2.7	-1.3
	13	GRIMBERGEN		99.7%	3.2	2.7	-0.4
	14	WEMMEL		98.9%	8.6	6.6	-1.9
	15/15-2/15-3	ZAVENTEM	(*)	80.5%	-	-	-
	16	VELTEM		96.8%	139.9	127.6	-12.3
	19-2	VILVOORDE		99.2%	25.8	22.5	-3.3
	20	MACHELEN		99.8%	19.7	27.9	8.2
	21	STROMBEEK-BEVER		99.5%	24.3	19.4	-4.9
	23	STEENOKKERZEEL	(*)	99.7%	-	-	-
	24	KRAAINEM		99.5%	55.8	41.4	-14.3
	26	BRUXELLES		100.0%	3.2	3.3	0.0
BIM / IBGE	30	HAREN		99.6%	120.7	93.1	-27.6
	31	EVERE		99.7%	32.5	21.5	-11.0
LNE	40	KONINGSLO	_	99.9%	41.6	29.8	-11.8
LINL	41	GRIMBERGEN		98.3%	14.4	29.6 4.6	-11.8 -9.8
	42	DIEGEM		95.7%	165.0	4.6 212.3	47.3
	43	ERPS-KWERPS		94.4%	105.0	63.5	-41.6
	43	TERVUREN		94.4%	14.2	8.6	-41.6 -5.6
	44 45	MEISE		96.9%	5.2	8.6 3.1	-5.6 -2.1
	45 46-2	WEZEMBEEK-OPPEM		94.1%	71.2	3.1 46.2	-2.1 -25.0
	40-2 47-2	WEZEMBEEK-OPPEM		99.9%	23.0	46.2 13.5	-25.0 -9.5
	47-2	BERTEM		99.9%	6.8	2.1	-9.5 -4.7
(*) NINAT -: (/	40-2	DERIEW		99.0%	0.0	۷.۱	-4.7

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

Tableau 10 : résultats pour nxLAmax>70,23-07h (période de nuit)

				Taux	nxLAn	nax>70		1
				d'activité	mesuré	calculé		différence
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	INM		NM-NMS
							<u> </u>	
Brussels Airport	1	STEENOKKERZEEL	(*)	98.7%	-	-		-
·	2 / 2-2	KORTENBERG	` '	98.1%	15.5	15.9		0.4
	3	HUMELGEM -Airside	(*)	99.6%	-	-		-
	4	NOSSEGEM		98.8%	12.6	13.1		0.4
	6	EVERE		95.1%	3.5	1.9		-1.6
	7	STERREBEEK		98.3%	6.6	4.7		-1.9
	8	KAMPENHOUT		97.8%	26.5	27.1		0.5
	9	PERK		99.5%	1.2	0.9		-0.3
	10	N.O-HEEMBEEK		99.2%	8.7	7.5		-1.2
	11 / 11-2	WOLUWE-ST. PIERRE		99.5%	5.2	4.4		-0.8
	12	DUISBURG		98.7%	2.2	1.6		-0.6
	13	GRIMBERGEN		99.5%	0.3	0.2		-0.2
	14	WEMMEL		98.6%	1.3	1.4		0.0
	15/15-2/15-3	ZAVENTEM	(*)	80.6%	-	-		-
	16	VELTEM	` '	97.3%	11.7	11.0		-0.7
	19-2	VILVOORDE		98.9%	4.9	3.5		-1.4
	20	MACHELEN		99.4%	4.0	4.5		0.5
	21	STROMBEEK-BEVER		99.7%	5.2	3.9		-1.3
	23	STEENOKKERZEEL	(*)	99.6%	-	-		-
	24	KRAAINEM	` '	99.7%	6.2	5.1		-1.2
	26	BRUXELLES		99.7%	1.6	0.1		-1.5
BIM / IBGE	30	HAREN		99.0%	15.5	12.5		-3.0
	31	EVERE		99.6%	4.1	2.3		-1.9
LNE	40	KONINGSLO		99.9%	6.7	5.1		-1.6
	41	GRIMBERGEN		98.2%	2.3	1.4		-1.0
	42	DIEGEM		95.6%	21.4	22.0		0.5
	43	ERPS-KWERPS		94.2%	13.2	10.6		-2.6
	44	TERVUREN		98.9%	5.8	3.3		-2.5
	45	MEISE		93.9%	0.7	0.4		-0.4
	46-2	WEZEMBEEK-OPPEM		99.9%	6.5	5.2		-1.3
	47-2	WEZEMBEEK-OPPEM		99.9%	6.9	4.7		-2.3
	48-2	BERTEM		99.0%	1.3	0.4		-0.9

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

5.2. Evolution des grandeurs acoustiques

En 2005, le gestionnaire de l'aéroport a légèrement modifié la procédure de corrélation des vols dans le système NMS et a optimalisé la corrélation pour certaines stations de mesure. Les données des années 2005 et 2006 sont, depuis lors, traitées et corrélées aux mouvements d'avions de la même manière. Une comparaison directe des résultats moyens annuels de 2005 et 2006 est ainsi possible. L'évolution des principales grandeurs acoustiques est synthétisée dans le tableau 11.

Tableau 11 : d	comparaiso	n des indicateurs 20	05-20	06							
				Lni	ght	L	den		max>70 7-23h		nax>70 ·07h
EXPLOITANT	NMT	LOCALISATION		2005	2006	2005	2006	2005	2006	2005	2006
Brussels Airport	1	STEENOKKERZEEL	(*)	-	- 1	-	T - 1	_	1 -	-	-
''''	2 / 2-2	KORTENBERG	` '	67.2	64.3	74.8	72.9	213.8	199.4	21.7	15.5
	3	HUMELGEM -Airside	(*)	-	_	-	-	-	-	-	-
	4	NOSSEGEM	()	64.0	64.0	70.5	70.8	45.1	61.3	12.3	12.6
	6	EVERE		47.9	46.5	56.5	55.4	43.8	38.5	4.2	3.5
	7	STERREBEEK		52.4	52.3	58.0	58.3	8.5	14.8	6.2	6.6
	8	KAMPENHOUT		54.7	55.9	61.1	62.3	46.3	59.5	20.6	26.5
	9	PERK		46.6	44.7	53.8	52.9	6.8	9.1	1.5	1.2
	10	N.O-HEEMBEEK		52.3	52.2	59.9	59.6	65.4	60.1	9.2	8.7
	11 / 11-2	WOLUWE-ST. PIERRE		49.2	49.1	56.6	56.6	34.1	37.4	5.5	5.2
	12	DUISBURG		42.4	43.5	48.2	49.6	2.3	3.9	1.7	2.2
	13	GRIMBERGEN		32.6	34.3	44.9	44.8	3.5	3.2	0.3	0.3
	14	WEMMEL		43.0	41.7	50.8	49.7	9.3	8.6	1.6	1.3
	15/15-2/15-3	ZAVENTEM	(*)	-	_	-	_	-	-	-	-
	16	VELTEM	()	54.4	52.2	62.5	61.1	160.9	139.9	17.9	11.7
	19/19-2	VILVOORDE		47.3	48.0	55.3	55.6	31.6	25.8	5.2	4.9
	20	MACHELEN		46.3	46.3	55.5	55.1	24.2	19.7	4.2	4.0
	21	STROMBEEK-BEVER		49.0	48.1	56.1	55.3	27.1	24.3	5.4	5.2
	23	STEENOKKERZEEL	(*)	-	-	_	-	_	-	-	- 1
	24	KRAAINEM	` /	50.5	49.7	58.1	57.6	53.0	55.8	7.3	6.2
	26	BRUXELLES		41.2	40.4	50.4	49.5	3.3	3.2	1.7	1.6
DIM / IDOE		LUADEN		50.0	55.0	04.0	1 040	400.0	100.7	45.0	1 455
BIM / IBGE	30	HAREN		56.3	55.8	64.9	64.2	129.6		15.6	15.5
	31	EVERE		48.1	48.3	56.7	56.4	35.2	32.5	4.1	4.1
LNE	40	KONINGSLO		49.8	49.8	57.5	57.3	43.2	41.6	6.7	6.7
	41	GRIMBERGEN		44.8	45.1	52.9	52.7	15.2	14.4	2.6	2.3
	42	DIEGEM		61.2	61.4	69.5	69.3	173.9	165.0	20.7	21.4
	43	ERPS-KWERPS		53.3	51.9	60.9	60.0	107.0		18.8	13.2
	44	TERVUREN		48.5	49.2	54.4	55.4	8.2	14.2	5.2	5.8
	45	MEISE		41.2	40.7	49.2	48.6	5.7	5.2	0.8	0.7
	46-2	WEZEMBEEK-OPPEM	(**)	52.6	52.4	59.9	60.2	48.0	71.2	5.6	6.5
	47-2	WEZEMBEEK-OPPEM	` '	50.6	50.7	56.9	57.3	16.2	23.0	6.5	6.9
	48-2	BERTEM	(***)	-	42.3	-	49.6	-	6.8	-	1.3

^(*) NMT située sur ou à proximité du terrain de l'aéroport (combinaison des bruits des avions au sol et en survol)

^(**) possibilité de comparaison limitée en raison du taux d'activité faible (56%) pour l'ensemble des NMT 46-2 et NMT 46-1 (voir rapport annuel 2005)

^(***) pas de possibilité de comparaison: NMT 48-2 inactive en 2005

5.3. Comparaison des résultats de mesures des régions

Les gestionnaires des réseaux régionaux publient régulièrement des rapports ou des résultats de mesure résumés qui sont établis sur la base de leurs propres méthodes mathématiques et d'analyse pour la détermination des immissions du bruit des événements sonores corrélés aux vols.

En comparaison avec le système NMS de l'aéroport, sur base duquel les résultats précédents sont obtenus, les régions ne disposent pas des données radar détaillées pour corréler les mouvements d'avions aux événements sonores. Par contre, les administrations régionales Bruxelles Environnement-IBGE et LNE reçoivent quotidiennement, de Belgocontrol, les données de vol provenant du centre de contrôle aérien Canac à Steenokkerzeel.

Les données de vol qui viennent du 'Système Automation' (A/S) contiennent d'une part des informations concernant le vol en question (indicatif d'appel du vol ou callsign, le type de mouvement, la route et la piste utilisées) et d'autre part les heures de départ ou d'arrivée, correspondant au moment du contact avec la piste de départ ('take-off') ou d'atterrissage ('touch-down'). En comparaison avec l'information détaillée des données radar, ces heures de départ ou d'arrivée sont considérablement moins précises. Elles sont fournies avec une précision d'une minute.

La corrélation des vols, faite par les administrations régionales, est basée sur la <u>synchronisation du temps</u> d'un événement sonore enregistré avec les heures de départ ou d'arrivée fournies par Belgocontrol, en tenant compte d'un certain décalage, fonction de la distance entre la station de mesure et l'aéroport. Le principe de base appliqué pour la corrélation des vols est identique dans les deux régions. Par contre le mode d'acquisition et le traitement des données (données de vols et acoustiques) est spécifique à chacune des régions.

Les différences entre les différents réseaux opérationnels autour de l'aéroport Brussels Airport sont présentées schématiquement au tableau 12.

Les résultats analysés et publiés par les régions sont résumés dans les tableaux 13, 14, 15 et 16 et comparés aux résultats mentionnés en \$ 5.1, obtenus sur base d'une corrélation automatique effectuée par le système NMS de l'aéroport.

Pour les résultats des réseaux régionaux, il faut se référer aux sources suivantes :

- pour les résultats de Bruxelles Environnement IBGE: Rapport 'Evaluation des nuisances acoustiques engendrées par le trafic aérien en région de Bruxelles-Capitale. Années 2004 à 2006' (http://documentation.bruxellesenvironnement.be/documents/200603_Rapport_Avion_2006.PDF)
- pour les résultats du département Leefmilieu, Natuur en Energie (LNE): 'Jaargemiddelde gegevens 2006' publiées sur le site web du LNE (http://www.lne.be/themas/hinder-en-risicos/geluidshinder/beleid/geluidmeetnet/brussels-airport/Meetresultaten)

Tableau 12 : comparaison des spécifications et caractéristiques des réseaux de mesure opérationels

	EXPLOITANT DU RESEAU	
Brussels Airport	Bruxelles Environnement - IBGE	LNE

MOISE MONITORING TERMINAL (MAT)						
NOISE MONITORING TERMINAL (NMT) fournisseur	Bruëll&Kjaer (Bk	``	01 dB		Bruëll&Kjaer (BK)	
	BK 3543	BK 3597C	Salto	Opera	BK 3543	BK 3597C
type	DN 3343	DK 3397C	Sailo	Орега	DN 3543	(+BK 3637B)
précision	type 1	type 1	type 1	type 1	type 1	type 1
(suivant IEC 60651en IEC 60804)	type i	type i	туре т	type i	type i	type i
analyseur	BK 4435	BK4441	Symphonie	Opera EX	BK 4435	BK4441
analyseul	(+BK 2260)	DIV4441	Symphonie	Орега ЕХ	(+BK 2260)	DIV4441
microphone	BK 4184 / 4198		GRAS - 41 AM	GRAS - 41 AM	BK 4184 / 4198	
microphone	DK 4104 / 4130		GIVAS - 41 AIVI	GIVAS - 41 AIVI	DK 4104 / 4190	
liaison modem	ligne téléphoniqu	A (PCTN)	ligne	GSM	ligne téléphoniqu	(PCTN)
iliaison modem	radiomodem (GS		téléphonique	OOW	radiomodem (GS	
vitesse de transmission	9.600 bit/s	oivi)	64.000 bit/s	9.600 bit/s	9.600 bit/s	ivi)
calibration à distance automatique	4x / jour		1x / jour	1x / jour	4x / jour	
acoustique	oui		oui	oui	oui	
électrique	insertion de tens	ion / CIC		insertion de	insertion de tensi	on / CIC
electrique	Inscribin de lens	1011 / 010		tension	Indention de tensi	511, 510
enregistrement des événements acoustiques	déclenchement e	événementiel	non (enregistreme	=	déclenchement é	vénementiel
seuil de détection	65/70		-	oommu)	60/65/70	
paramètre de déclenchement	LAeq,1s	LAeq,0.5 s	_			LAeq,0.5 s
durée minimum de dépassement du seuil	10 s	:04,0.0 0	_		10 s	04,0.00
daroo miiimam do dopadoomoni da dodii	1.00		-		100	
	CIC: Charged Inject	tion Calibration				
NOISE MONITORING SYSTEM (NMS)	, , , , , , , , , , , , , , , , , , , ,					
noise monitoring software						
moise meille gentliare						
logiciel d'acquisiation	BK 7802		dB32ENV (01dB)		BK 7802	
radar data option	BK 7804		-		-	
radar en flight capture software	BK 7675		-		-	
caractéristiques opérationnelles						
automatic download via modem	2 fois/jour		dBModem		1 fois/jour	
synchronisation horaire	réseau (timeserv	er)	timeserver	via GPS	réseau (timeserve	er)
timed databackup	quotidien	- /	quotidien		quotidien	,
'	<u> </u>				•	
TRAITEMENT/ANALYSE						
données de base	44				44	4;
données acoustiques	événements aco	ustiques	niveau LAeq,1s		événements acou	ıstıques
données du traffic aérien	CDB		Belgocontrol A/S		Belgocontrol A/S	
données radar	Belgocontrol		-		-	
331000 Tadar	_ = = = = = = = = = = = = = = = = = = =					
méthode de corrélation des vols						
principe de base	corrélation trace	s radar sur base de	synchronisation a	vec le vol	synchronisation a	ivec le vol
p	l'heure et du lieu		-,			
					I	
tolerance	trace radar comm	rise dans une	fenêtre temporelle	e: +/- 2 à 3 min	fenêtre temporelli	e:+/-2à3 m.in
tolerance	trace radar comp		fenêtre temporelle (fonction de la loc		fenêtre temporelle	e: +/- 2 à 3 min.
	trace radar comp hémisphère en r			e: +/- 2 à 3 min alisation du NMT)	fenêtre temporelle	e : +/- 2 à 3 min.
selection du mouvement aérien	hémisphère en r		(fonction de la loc			e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation					fenêtre temporelle non oui	e : +/- 2 à 3 min.
selection du mouvement aérien	hémisphère en r		(fonction de la loc		non	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique	hémisphère en r oui oui		(fonction de la loc	alisation du NMT)	non oui	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation	hémisphère en r		(fonction de la loc non oui detection d'événe	alisation du NMT)	non	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique	hémisphère en r oui oui		(fonction de la loc non oui	alisation du NMT)	non oui	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique	hémisphère en r oui oui		(fonction de la loc non oui detection d'événe automatique	alisation du NMT) ments	non oui oui (< 120 s)	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique	hémisphère en r oui oui oui (< 75 s)		(fonction de la loc non oui detection d'événe automatique Visual Basic appli	ralisation du NMT) ments	non oui	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique	hémisphère en r oui oui oui (< 75 s)		(fonction de la loc non oui detection d'événe automatique	ralisation du NMT) ments	non oui oui (< 120 s)	e : +/- 2 à 3 min.
selection du mouvement aérien - via le rayon de corrélation - via un filtre logique selection de l'événement acoustique	hémisphère en r oui oui oui (< 75 s)		(fonction de la loc non oui detection d'événe automatique Visual Basic appli	ralisation du NMT) ments icatie	non oui oui (< 120 s)	e : +/- 2 à 3 min.

Tableau 1	13 : rés	ultats n	our Ld	en
Idolodd		uituto p	Cui Eu	-211

			7 [Taux	Le	den	différence
				d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION		[%]	NMS	GW	GW-NMS
BIM / IBGE	30 31	HAREN EVERE		99.3% 99.7%	64.2 56.4	64.3 56.5	0.1 0.1
LNE	40	KONINGSLO	7 Г	99.9%	57.3	57.6	0.3
	41	GRIMBERGEN		98.3%	52.7	53.4	0.6
	42 43	DIEGEM ERPS-KWERPS		95.6% 94.3%	69.3 60.0	69.4 60.1	0.0 0.1
	44 45	TERVUREN MEISE		98.9%	55.4 48.6	55.8 49.9	0.4 1.3
	45 46-2	WEZEMBEEK-OPPEM		94.0% 99.9%	60.2	49.9 60.4	0.2
	47-2 48-2	WEZEMBEEK-OPPEM BERTEM		99.9% 99.0%	57.3 49.6	57.5 50.0	0.2 0.4

Tableau 14 : résultats pour Lnight

			Taux	Ln	ight	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30	HAREN	99.0%	55.8	56.0	0.2
	31	EVERE	99.6%	48.3	48.4	0.1
LNE	40	KONINGSLO	99.9%	49.8	50.0	0.2
	41	GRIMBERGEN	98.2%	45.1	45.6	0.5
	42	DIEGEM	95.6%	61.4	61.3	0.0
	43	ERPS-KWERPS	94.2%	51.9	51.9	0.0
	44	TERVUREN	98.9%	49.2	49.4	0.2
	45	MEISE	93.9%	40.7	42.2	1.5
	46-2	WEZEMBEEK-OPPEM	99.9%	52.4	52.5	0.1
	47-2	WEZEMBEEK-OPPEM	99.9%	50.7	50.8	0.1
	48-2	BERTEM	99.0%	42.3	42.6	0.3

Tableau 15 : résultats pour nxLAmax>70, 07-23h (période de jour)

			Taux	nxLAmax>	70, 07-23h	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
	_					
BIM / IBGE	30	HAREN	99.6%	120.7	120.7	0.0
	31	EVERE	99.7%	32.5	31.8	-0.7
LNE	40	KONINGSLO	99.9%	41.6	46.4	4.8
	41	GRIMBERGEN	98.3%	14.4	17.6	3.2
	42	DIEGEM	95.7%	165.0	165.7	0.7
	43	ERPS-KWERPS	94.4%	105.2	106.8	1.6
	44	TERVUREN	98.9%	14.2	18.0	3.8
	45	MEISE	94.1%	5.2	7.2	2.0
	46-2	WEZEMBEEK-OPPEM	99.9%	71.2	76.9	5.7
	47-2	WEZEMBEEK-OPPEM	99.9%	23.0	26.0	3.1
	48-2	BERTEM	99.0%	6.8	7.6	0.8

Tableau 16 : résultats pour nxLAmax>70, 23-07h (période de nuit)

			Taux	nxLAmax>	70, 23-07h	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30 31	HAREN EVERE	99.0% 99.6%	15.5 4.1	15.5 4.0	0.0 -0.1
LNE	40	IKONINGSLO	99.9%	6.7	7.0	0.3
	41	GRIMBERGEN	98.2%	2.3	2.7	0.4
	42 43	DIEGEM ERPS-KWERPS	95.6% 94.2%	21.4 13.2	21.4 13.4	0.0 0.2
	44	TERVUREN	98.9%	5.8	6.1	0.3
	45 46-2	MEISE WEZEMBEEK-OPPEM	93.9%	0.7 6.5	1.1 6.8	0.3 0.3
	40-2 47-2	WEZEMBEEK-OPPEM	99.9%	6.9	7.2	0.3
	48-2	BERTEM	99.0%	1.3	1.4	0.1

En règle générale, aussi bien pour les indicateurs L_{den} et L_{night} que pour les fréquences de dépassement $nxL_{Amax} > 70$, les valeurs publiées par les régions sont majoritairement plus élevées. Les différences sont relativement limitées.

Comme indiqué dans le rapport 2005, les différences peuvent en grande partie être expliquées par une différence dans le taux de corrélation. Pour les stations de LNE, c'est le rapport entre le nombre de vols corrélés et le nombre total d'événements acoustiques enregistrés. Pour les stations gérées par Bruxelles Environnement, les événements acoustiques sont validés et corrélés (taux de corrélation = 100%) avant leur importation dans le système NMS. Les différences précises du taux de corrélation sont données dans le tableau 17.

Tableau 17 : taux de corrélation

			Taux	taux de co	orrélation	différence
			d'activité	Brussels Airport	régions	
EXPLOITANT	NMT	LOCALISATION	[%]	NMS	GW	GW-NMS
BIM / IBGE	30	HAREN	99.3%	96.4%	100.0%	3.6%
	31	EVERE	99.7%	97.1%	100.0%	2.9%
LNE	40	KONINGSLO	99.9%	70.7%	79.8%	9.1%
	41	GRIMBERGEN	98.3%	71.9%	84.3%	12.4%
	42	DIEGEM	95.6%	97.6%	97.7%	0.1%
	43	ERPS-KWERPS	94.3%	91.8%	92.2%	0.4%
	44	TERVUREN	98.9%	60.1%	91.8%	31.7%
	45	MEISE	94.0%	54.1%	83.3%	29.2%
	46-2	WEZEMBEEK-OPPEM	99.9%	84.1%	91.1%	7.0%
	47-2	WEZEMBEEK-OPPEM	99.9%	79.6%	88.5%	8.9%
	48-2	BERTEM	99.0%	59.7%	65.5%	5.8%

6. Conclusions

Ce rapport annuel 2006 porte sur le monitoring du bruit de l'aéroport Brussels Airport et a été réalisé grâce à la collaboration de tous les gestionnaires de bases de données et systèmes de mesure installés autour de l'aéroport.

Ce rapport fait suite à un premier rapport relatif à l'année 2005 et a été réalisé par un groupe de travail technique. Ce groupe de travail, œuvrant sur base volontaire et en toute indépendance, assure ainsi la continuité aux travaux menés par la « Commission d'Avis » qui, à défaut de nouveau mandat, a été suspendue pour une durée indéterminée.

Le rapport de 2006 suit dans les grandes lignes le même canevas que le rapport précédent (année 2005). Les bases de données, après une adaptation et une optimalisation de la procédure de corrélation des vols et un élargissement de l'analyse à la période diurne, sont également les mêmes de sorte qu'une comparaison complète avec les indicateurs évalués en 2005 est possible. En certains points le rapport a été adapté ou complété.

Les grandeurs acoustiques ont été déterminées pour chaque mois de l'année 2006 et globalement pour l'année. Ces indicateurs (mensuels ou annuels) ne permettent pas de quantifier en détail l'impact acoustique d'éventuels modifications appliquées aux procédures de vol, de la répartition précise du trafic sur les différentes pistes de décollage et atterrissages ou de la répartition des «quota-count» (QC).

Les résultats moyens annuels calculés pour les principales grandeurs acoustiques ont été comparés aux résultats calculés, obtenus dans le cadre de la détermination des contours de bruit (par Brussels Airport au moyen du modèle de calcul INM). Une comparaison a également été établie entre les grandeurs acoustiques évaluées dans le rapport, qui résultent du traitement automatique réalisé par le système NMS de Brussels Airport, avec celles fournies par les régions, qui sont obtenues sur base d'un traitement et d'une analyse spécifique et autonome.

Surveillance du bruit – Brussels Airport

Rapport annuel 2006

Annexes

Surveillance du bruit – Brussels Airport

Rapport annuel 2006

Annexe A

A.1 Analyse de l'utilisation des pistes en 2006

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2006 07h - 01.01.2007 07h source: Central Database (CDB)

période d'observation:

valeurs 24h (tous les mouvements)

MOIS				DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	Г	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	Г	5696	33	501	570	192	2464	9456	1776	4586	21	3038	5	0	9426	18882
février		6444	16	362	560	178	1811	9371	1815	4965	109	2490	5	0	9384	18755
mars		6984	9	384	781	232	2493	10883	2270	5108	40	3451	15	0	10884	21767
avril		8360	34	739	228	101	780	10242	3091	6135	40	975	4	0	10245	20487
mai		9889	95	1064	38	89	438	11613	3399	7426	325	422	2	27	11601	23214
juin		9753	30	578	48	223	870	11502	3349	7132	45	848	9	130	11513	23015
juillet		7656	66	1001	158	501	2046	11428	3433	5386	116	2187	6	283	11411	22839
aôut		6679	17	3553	495	59	0	10803	9320	877	4	525	73	0	10799	21602
septembre		9310	49	1006	110	111	867	11453	3821	6743	79	845	2	0	11490	22943
octobre		9407	42	1021	38	76	557	11141	3409	6831	392	490	1	0	11123	22264
novembre		9294	101	891	0	34	56	10376	2721	6866	769	1	0	0	10357	20733
décembre		7068	37	1440	60	47	448	9100	2696	4870	1054	533	0	0	9153	18253
TOTAL ANNUEL		96540	529	12540	3086	1843	12830	127368	41100	66925	2994	15805	122	440	127386	254754
		75.8%	0.4%	9.8%	2.4%	1.4%	10.1%	100.0%	32.3%	52.5%	2.4%	12.4%	0.1%	0.3%	100.0%	

période d'observation:

période de jour 07-23h

MOIS
janvier
février
mars
avril
mai
juin
juillet
aôut
septembre
octobre
novembre
décembre
TOTAL ANNUEL

		DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
5299	26	335	522	111	2166	8459	1288	4314	1	2718	5	0	8326	16785
5965	8	204	506	130	1615	8428	1318	4658	102	2209	5	0	8292	16720
6485	2	159	707	189	2257	9799	1630	4842	25	3106	15	0	9618	19417
7692	7	466	207	45	624	9041	2302	5828	1	787	4	0	8922	17963
8959	74	823	37	45	328	10266	2391	6979	296	411	2	27	10106	20372
8843	11	334	47	152	736	10123	2396	6648	2	816	9	130	10001	20124
6759	5	716	154	409	1816	9859	2374	4838	51	2059	6	283	9611	19470
5820	17	2915	428	59	0	9239	7845	717	4	428	73	0	9067	18306
8583	9	738	109	26	674	10139	2846	6321	32	789	2	0	9990	20129
8558	23	750	38	35	473	9877	2459	6451	357	490	1	0	9758	19635
8588	81	631	0	1	0	9301	1892	6610	692	1	0	0	9195	18496
6455	23	1202	56	32	393	8161	1981	4654	1011	450	0	0	8096	16257
88006	286	9273	2811	1234	11082	112692	30722	62860	2574	14264	122	440	110982	223674
78.1%	0.3%	8.2%	2.5%	1.1%	9.8%	100.0%	27.7%	56.6%	2.3%	12.9%	0.1%	0.4%	100.0%	

période d'observation:

période de nuit 23-07h ('night')

MOIS
janvier
février
mars
avril
mai
juin
juillet
aôut
septembre
octobre
novembre
décembre
TOTAL ANNUEL

TOTAL			GES	ERRISSA	ATT					ES	COLLAG	DE		
	Tot.	07R	07L	02	20	25L	25R	Tot.	07R	07L	02	20	25L	25R
2097	1100	0	0	320	20	272	488	997	298	81	48	166	7	397
2035	1092	0	0	281	7	307	497	943	196	48	54	158	8	479
2350	1266	0	0	345	15	266	640	1084	236	43	74	225	7	499
2524	1323	0	0	188	39	307	789	1201	156	56	21	273	27	668
2842	1495	0	0	11	29	447	1008	1347	110	44	1	241	21	930
2891	1512	0	0	32	43	484	953	1379	134	71	1	244	19	910
3369	1800	0	0	128	65	548	1059	1569	230	92	4	285	61	897
3296	1732	0	0	97	0	160	1475	1564	0	0	67	638	0	859
2814	1500	0	0	56	47	422	975	1314	193	85	1	268	40	727
2629	1365	0	0	0	35	380	950	1264	84	41	0	271	19	849
2237	1162	0	0	0	77	256	829	1075	56	33	0	260	20	706
1996	1057	0	0	83	43	216	715	939	55	15	4	238	14	613
31080	16404	0	0	1541	420	4065	10378	14676	1748	609	275	3267	243	8534
	100.0%	0.0%	0.0%	9.4%	2.6%	24.8%	63.3%	100.0%	11.9%	4.1%	1.9%	22.3%	1.7%	58.1%

période d'observation:

période de jour 06-23h

janvier février mars avril mai juilne juillet aôut septembre octobre novembre décembre
février mars avril mai juin juillet aôut septembre octobre novembre
mars avril mai juin juillet aôut septembre octobre novembre
avril mai juin juillet aôut septembre octobre novembre
mai juin juillet aôut septembre octobre novembre
juin juillet aôut septembre octobre novembre
juillet aôut septembre octobre novembre
aôut septembre octobre novembre
septembre octobre novembre
octobre novembre
novembre
décembre
TOTAL ANNUEL

		DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
5469	26	342	530	118	2247	8732	1299	4352	1	2753	5	0	8410	17142
6141	8	220	517	138	1672	8696	1347	4694	102	2226	5	0	8374	17070
6681	2	193	721	191	2321	10109	1652	4882	28	3125	15	0	9702	19811
8063	8	544	209	45	624	9493	2332	5870	2	787	4	0	8995	18488
9379	74	890	37	45	344	10769	2411	7023	298	412	2	27	10173	20942
9350	11	361	47	152	736	10657	2410	6702	2	816	9	130	10069	20726
7302	5	787	154	410	1858	10516	2397	4887	51	2063	6	283	9687	20203
6176	17	3203	448	59	0	9903	7930	719	4	430	73	0	9156	19059
9051	9	799	110	26	694	10689	2878	6369	33	791	2	0	10073	20762
9000	24	811	38	35	473	10381	2500	6509	360	490	1	0	9860	20241
8886	82	675	0	1	0	9644	1911	6659	699	1	0	0	9270	18914
6702	25	1228	56	33	410	8454	2010	4693	1020	460	0	0	8183	16637
92200	291	10053	2867	1253	11379	118043	31077	63359	2600	14354	122	440	111952	22999
78.1%	0.2%	8.5%	2.4%	1.1%	9.6%	100.0%	27.8%	56.6%	2.3%	12.8%	0.1%	0.4%	100.0%	·

période d'observation: période de nuit 23-06h

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	227	7	159	40	74	217	724	477	234	20	285	0	0	1016	1740
février	303	8	142	43	40	139	675	468	271	7	264	0	0	1010	1685
mars	303	7	191	60	41	172	774	618	226	12	326	0	0	1182	1956
avril	297	26	195	19	56	156	749	759	265	38	188	0	0	1250	1999
mai	510	21	174	1	44	94	844	988	403	27	10	0	0	1428	2272
juin	403	19	217	1	71	134	845	939	430	43	32	0	0	1444	2289
juillet	354	61	214	4	91	188	912	1036	499	65	124	0	0	1724	2636
aôut	503	0	350	47	0	0	900	1390	158	0	95	0	0	1643	2543
septembre	259	40	207	0	85	173	764	943	374	46	54	0	0	1417	2181
octobre	407	18	210	0	41	84	760	909	322	32	0	0	0	1263	2023
novembre	408	19	216	0	33	56	732	810	207	70	0	0	0	1087	1819
décembre	366	12	212	4	14	38	646	686	177	34	73	0	0	970	1616
TOTAL ANNUEL	4340	238	2487	219	590	1451	9325	10023	3566	394	1451	0	0	15434	24759
	46.5%	2.6%	26.7%	2.3%	6.3%	15.6%	100.0%	64.9%	23.1%	2.6%	9.4%	0.0%	0.0%	100.0%	

période d'observation: période de jour 07-19h ('day')

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	3919	24	335	403	87	1629	6397	1024	3219	1	2057	5	0	6306	12703
février	4481	8	204	391	103	1245	6432	1020	3453	102	1668	4	0	6247	12679
mars	4838	1	158	565	159	1778	7499	1290	3589	25	2395	12	0	7311	14810
avril	5720	7	466	185	41	527	6946	1897	4302	1	665	4	0	6869	13815
mai	6770	43	793	16	40	250	7912	1913	5178	266	294	2	27	7680	15592
juin	6766	9	325	2	136	538	7776	1912	5000	2	591	8	113	7626	15402
juillet	4990	4	615	89	390	1390	7478	1839	3522	6	1593	4	283	7247	14725
aôut	4159	17	2339	395	20	0	6930	5916	444	4	393	27	0	6784	13714
septembre	6520	7	634	92	24	556	7833	2189	4762	32	638	1	0	7622	15455
octobre	6403	23	692	11	27	389	7545	1927	4848	281	389	1	0	7446	14991
novembre	6376	80	570	0	1	0	7027	1448	4996	549	1	0	0	6994	14021
décembre	4804	23	978	53	30	350	6238	1428	3410	966	387	0	0	6191	12429
TOTAL ANNUEL	65746	246	8109	2202	1058	8652	86013	23803	46723	2235	11071	68	423	84323	170336
	76.4%	0.3%	9.4%	2.6%	1.2%	10.1%	100.0%	28.2%	55.4%	2.7%	13.1%	0.1%	0.5%	100.0%	

période d'observation: période de soir 19-23h ('evening')

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	1380	2	0	119	24	537	2062	264	1095	0	661	0	0	2020	4082
février	1484	0	0	115	27	370	1996	298	1205	0	541	1	0	2045	4041
mars	1647	1	1	142	30	479	2300	340	1253	0	711	3	0	2307	4607
avril	1972	0	0	22	4	97	2095	405	1526	0	122	0	0	2053	4148
mai	2189	31	30	21	5	78	2354	478	1801	30	117	0	0	2426	4780
juin	2077	2	9	45	16	198	2347	484	1648	0	225	1	17	2375	4722
juillet	1769	1	101	65	19	426	2381	535	1316	45	466	2	0	2364	4745
aôut	1661	0	576	33	39	0	2309	1929	273	0	35	46	0	2283	4592
septembre	2063	2	104	17	2	118	2306	657	1559	0	151	1	0	2368	4674
octobre	2155	0	58	27	8	84	2332	532	1603	76	101	0	0	2312	4644
novembre	2212	1	61	0	0	0	2274	444	1614	143	0	0	0	2201	4475
décembre	1651	0	224	3	2	43	1923	553	1244	45	63	0	0	1905	3828
TOTAL ANNUEL	22260	40	1164	609	176	2430	26679	6919	16137	339	3193	54	17	26659	53338
	83.4%	0.1%	4.4%	2.3%	0.7%	9.1%	100.0%	26.0%	60.5%	1.3%	12.0%	0.2%	0.1%	100.0%	

période d'observation: l'heure du matin 06-07h

MOIS			DE	COLLAG	ES					ATT	ERRISSA	GES			TOTAL
	25R	25L	20	02	07L	07R	Tot.	25R	25L	20	02	07L	07R	Tot.	
janvier	170	0	7	8	7	81	273	11	38	0	35	0	0	84	357
février	176	0	16	11	8	57	268	29	36	0	17	0	0	82	350
mars	196	0	34	14	2	64	310	22	40	3	19	0	0	84	394
avril	371	1	78	2	0	0	452	30	42	1	0	0	0	73	525
mai	420	0	67	0	0	16	503	20	44	2	1	0	0	67	570
juin	507	0	27	0	0	0	534	14	54	0	0	0	0	68	602
juillet	543	0	71	0	1	42	657	23	49	0	4	0	0	76	733
aôut	356	0	288	20	0	0	664	85	2	0	2	0	0	89	753
septembre	468	0	61	1	0	20	550	32	48	1	2	0	0	83	633
octobre	442	1	61	0	0	0	504	41	58	3	0	0	0	102	606
novembre	298	1	44	0	0	0	343	19	49	7	0	0	0	75	418
décembre	247	2	26	0	1	17	293	29	39	9	10	0	0	87	380
TOTAL ANNUEL	4194	5	780	56	19	297	5351	355	499	26	90	0	0	970	6321
	78.4%	0.1%	14.6%	1.0%	0.4%	5.6%	100.0%	36.6%	51.4%	2.7%	9.3%	0.0%	0.0%	100.0%	

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2006 07h - 01.01.2007 07h source: Central Database (CDB)

période d'observation: période de nuit 23-06h

période d'observation: période de jour 06-23h

SID			DECOL	LAGES			TOTAL	1	SID			DECOLL	AGES			TOTAL
	25R	25L	20	02	07L	07R				25R	25L	20	02	07L	07R	
CIV1C	116	2	0	0	0	0	118		CIV1C	13960	24	0	0	0	0	13984
CIV1E CIV1Q	11 0	1	0	0	0	0	12 3		CIV1E CIV2Q	3670 0	17 1	1 0	0	0	0	3688 1
CIV2Q	0	46	0	0	0	0	46		CIV3H	0	0	0	0	1	0	1
CIV3J	0	0	0	0	0	31	31		CIV3J	0	0	0	0	0	150	150
CIV4H	0	0	0	0	1	0	1		CIV4H	0	0	0	0	190	1	191
CIV4J	0	0	0	0	0	420	420		CIV4J	0	0	0	0	7	2788	2795
CIV5F CIV6D	0 39	0	0	9	0	0 0	9 39		CIV5F CIV6L	0	0	0 105	112 0	0	0	112 105
CIV7C	1	0	0	0	0	0	1		CIV7D	16	0	0	0	0	0	16
CIV7D	1152	0	0	0	0	0	1152		CIV7L	0	0	1841	0	0	0	1841
CIV7L	0	0	66	0	0	0	66		CIV9C	621	4	0	0	0	0	625
CIV9C	2	0	0	0	0	0	2		DENUT2C	339	11	0	0	0	0	350
DENUT1N DENUT2C	0 23	0	3 0	0	0	0 0	3 23		DENUT2F DENUT2H	0	0	0	10 0	0 12	0 86	10 98
DENUT2F	0	0	0	5	0	0	23 5		DENUT2L	0	0	19	0	0	0	19
DENUT2H	ő	0	0	0	17	0	17		DENUT2N	0	0	63	0	0	0	63
DENUT2N	0	0	98	0	0	0	98		DENUT3C	7277	89	0	0	0	0	7366
DENUT3C	692	2	0	0	0	0	694		DENUT3F	0	0	0	140	0	0	140
DENUT3F	0	0	0	13	0	0	13		DENUT3H	0	0	0	0	30	134	164
DENUT3H DENUT4F	0	0	0	0 53	48 0	4 0	52 53		DENUT3L DENUT4F	0	0	275 0	0 433	0	0	275 433
DENUT4H	0	0	0	0	103	2	105		DENUT4H	0	0	0	0	48	195	243
DENUT5F	0	0	0	9	0	0	9	1	DENUT5F	0	0	0	137	0	0	137
HELEN2C	24	0	0	0	0	0	24		ELSIK1F	0	0	0	1	0	0	1
HELEN2F	0	0	0	4	0	0	4	1	ELSIK1H	0	0	0	0	0	1	1
HELEN2H HELEN2N	0	0	0 32	0	31 0	1 0	32 32	1	ELSIK2C HELEN2C	44 428	0	0	0	0	0	44 428
HELEN3C	503	7	0	0	0	0	32 510		HELEN2C HELEN2F	428 0	0	0	17	0	0	428 17
HELEN3F	0	0	0	15	0	0	15		HELEN2H	0	0	0	0	2	119	121
HELEN3H	0	0	0	0	34	2	36		HELEN2L	0	0	41	0	0	0	41
HELEN4F	0	0	0	52	0	0	52		HELEN2N	0	0	106	0	0	0	106
HELEN4H	0	0	0	0	89 0	4 0	93		HELEN3C	9557 0	10 0	0	0 202	0	0	9567
HELEN5F KOK1C	1	0	0	7 0	0	0	7 1		HELEN3F HELEN3H	0	0	0	0	9	0 173	202 182
KOK1E KOK1F	0	0	0	1	0	0	1		HELEN3L	0	0	565	0	0	0	565
KOK2C	6	0	0	0	0	0	6		HELEN4F	0	0	0	596	0	0	596
KOK3L	0	0	1	0	0	0	1		HELEN4H	0	0	0	0	52	294	346
LNO1J	0	0	0	0	0	16	16		HELEN5F	0	0	0	188	0	0	188
LNO2C LNO2D	1	0	0	0	0	0 0	1		KOK1C KOK1F	19 0	0	0	0 43	0	0	19 43
LNO2H	0	0	0	0	2	0	1 2		KOK1F KOK1H	0	0	0	0	2	18	20
LNO2J	0	0	0	0	0	227	227		KOK2C	463	1	0	0	0	0	464
LNO2Q	0	14	0	0	0	0	14		KOK3L	0	0	1	0	0	0	1
LNO2Z	9	0	0	0	0	0	9		KOK4L	0	0	30	0	0	0	30
LNO3F	0	0	0	6	0	0	6		LNO1C	111	0	0	0	0	0	111
LNO3L LNO3Z	0 236	0	34 0	0	0	0 0	34 236		LNO1D LNO1H	2	0	0	0	0 2	0	2 2
LNO4L	0	0	553	0	0	0	553		LNO1J	0	0	0	0	0	7	7
NIK1C	0	2	0	0	0	0	2		LNO2C	2177	0	0	0	0	0	2177
NIK1F	0	0	0	2	0	0	2		LNO2D	28	0	0	0	0	0	28
NIK1H	0	0	0	0	240	12	252		LNO2H	0	0	0	0	45	0	45
NIK1N NIK2C	0 5	0	4 0	0	0	0 0	4 5		LNO2J LNO3F	0	0	0	0 5	0	354 0	354 5
NIK2C	0	39	0	0	0	0	39		LNO3L	0	0	5	0	0	0	5
NIK2F	0	0	0	25	0	0	25		LNO3Z	1	0	0	0	0	0	1
NIK2L	0	0	3	0	0	0	3		LNO4L	0	0	158	0	0	0	158
NIK2N	0	0	78	0	0	0	78	1	NIK1C	430	0	0	0	0	0	430
NIK3Z NIK4Z	28 759	0	0	0	0	0	28 759	1	NIK1F NIK1H	0	0	0	4	0 85	0 734	4 819
PITES2C	0	1	0	0	0	0	1	1	NIK1H NIK1L	0	0	29	0	0	0	29
PITES2J	0	0	0	0	0	1	1	1	NIK2C	9549	9	0	0	0	0	9558
PITES3C	7	13	0	0	0	0	20		NIK2F	0	0	0	712	0	0	712
PITES3F	0	0	0	1	0	0	1		NIK2L	0	0	477	0	0	0	477
PITES3J PITES3L	0	0	0 8	0	0	12 0	12 8		NIK2N NIK4Z	0 2	0	81 0	0	0	0	81 2
PITES3L PITES3N	0	0	37	0	0	0	8 37		PITES1C	18	0	0	0	0	0	2 18
PITES3Z	19	0	0	0	0	0	19		PITES1J	0	0	0	0	0	2	2
ROUSY1J	0	0	0	0	0	22	22		PITES1L	0	0	4	0	0	0	4
ROUSY1L	0	0	1	0	0	0	1		PITES2C	107	0	0	0	0	0	107
ROUSY2C	1	4	0	0	0	0	5		PITES2J	0	0	0	0	0	49	49
ROUSY2H ROUSY2J	0	0	0	0	1 0	0 83	1 83		PITES2L PITES3C	0 556	0	23 0	0	0	0	23 557
ROUSY2L	0	0	3	0	0	0	3		PITES3D	3	0	0	0	0	0	3
ROUSY2N	0	0	19	0	0	0	19		PITES3F	0	0	0	14	0	0	14
ROUSY2Z	4	0	0	0	0	0	4		PITES3H	0	0	0	0	12	0	12
ROUSY3C	2	54	0	0	0	0	56		PITES3J	0	0	0	0	0	86	86
ROUSY3F	0	0	0	5	0	0	5 111		PITES3L	0	0	297	0	0	0	297
ROUSY3J ROUSY3L	0	0	0 28	0	0	111 0	111 28		ROUSY1C ROUSY1J	397 0	3	0	0	0	0 67	400 67
ROUSY3N	0	0	314	0	0	0	314		ROUSY1L	0	0	31	0	0	0	31
ROUSY3Z	138	0	0	0	0	0	138		ROUSY2C	1597	0	0	0	0	0	1597
SOPOK1H	0	0	0	0	2	0	2		ROUSY2D	8	0	0	0	0	0	8
SOPOK1J	0	0	0	0	0	31	31		ROUSY2F	0	0	0	1	0	0	1
SOPOK1L SOPOK2C	0	0	45 0	0	0	0	45 2	1	ROUSY2H ROUSY2J	0	0	0	0	30 0	0 708	30 708
SOPOK2H	0	0	0	0	17	0	17	1	ROUSY2L	0	0	56	0	0	0	56
SOPOK2J	0	0	0	0	0	467	467	1	ROUSY3C	6357	26	0	0	0	0	6383
	•	•	•	, ,				•		•		•		•		•

	46.5%	2.6%	26.7%	2.3%	6.3%	15.6%	100.0%
TOTAL	4340	238	2487	219	590	1451	9325
NO SID	60	2	2	1	2	0	67
SPI3Z SPI4Z	2 12	0	0	0	0	0	2
SPI3H SPI3L	0	0	0 35	0	3	0	3 35
SPI2Q	0	3	0	0	0	0	3
SPI2L	0	0	1	0	0	0	1
SPI2J	0	0	0	0	0	5	5
SOPOK4Z SPI2C	449 3	0	0	0	0	0	449 3
SOPOK3Z	11	0	0	0	0	0	11
SOPOK3F	0	0	0	11	0	0	11
SOPOK3D	3	0	0	0	0	0	3
SOPOK3C	0	43	0	0	0	0	43
SOPOK3C	20	0	0	0	0	0	20

ROUSY3D	34	0	0	0	0	0	34
ROUSY3F	0	0	0	47	0	0	47
ROUSY3H	0	0	0	0	74	0	74
ROUSY3J	0	0	0	0	0	588	588
ROUSY3L	0	0	1208	0	0	0	1208
ROUSY3N	0	0	2	0	0	0	2
ROUSY3Z	5	0	0	0	0	0	5
SOPOK1H	0	0	0	0	4	0	4
SOPOK1J	0	0	0	0	0	169	169
SOPOK1L	0	0	83	0	0	0	83
SOPOK2C	947	6	0	0	0	0	953
SOPOK2D	48	0	0	0	0	0	48
SOPOK2H	0	0	0	0	529	0	529
SOPOK2J	0	0	0	0	0	3617	3617
SOPOK2L	0	0	3633	0	0	0	3633
SOPOK3C	23633	62	0	0	0	0	23695
SOPOK3D	950	12	0	0	0	0	962
SOPOK3F	0	0	0	153	0	0	153
SOPOK4Z	8	0	0	0	0	0	8
SPI1C	263	0	0	0	0	0	263
SPI1J	0	0	0	0	0	46	46
SPI2C	6370	0	0	0	0	0	6370
SPI2D	69	2	0	0	0	0	71
SPI2H	0	0	0	0	1	0	1
SPI2J	0	0	0	0	0	942	942
SPI2L	0	0	16	0	0	0	16
SPI2Q	0	2	0	0	0	0	2
SPI3F	0	0	0	35	0	0	35
SPI3H	0	0	0	0	47	0	47
SPI3L	0	0	812	0	0	0	812
SPI4Z	4	0	0	0	0	0	4
							0
NO SID	2124	11	91	17	71	50	2364
ARVOL	1	0	0	0	0	0	1
NIVOR	7	0	0	0	0	1	8
TOTAL	92200	291	10053	2867	1253	11379	118043
	78.1%	0.2%	8.5%	2.4%	1.1%	9.6%	100.0%

ANALYSE DES DONNEES DE TRAFFIC AERIEN

période: 01.01.2006 07h - 01.01.2007 07h source: Central Database (CDB)

période d'observation: période de nuit 23-06h

période d'observation: période de jour 06-23h

ICAO	N	Q	С	ICAO	N	Q	С]	ICAO	N	Q	С	ICAO	N	Q	С	ICA)	N	Q	С
D750	0004	QCD	QCA	1005		QCD	QCA		D IOS	0.4000	QCD	QCA	MDOO		QCD	QCA	DEG		_	QCD	QCA
B752 A30B	9081 4190	2.7 10.5	4.0 6.4	AS65 BE9T	2	1.0	1.0 1.0		RJ85 RJ1H	24300 22687	1.4 1.6	2.1 2.3	MD88 MD83	96 94	7.1 8.0	1.1 1.0	BE3		6 6	1.0 1.0	1.0 1.0
A320	2011	3.7	1.5	C30J	2	11.9	2.6		A320	22534	3.3	1.5	GLEX	81	1.2	1.0	C42		6	1.0	1.0
B734	1811	3.0	4.2	C414	2	1.0	1.0		A319	17000	2.0	1.0	B762	65	8.1	5.5	M20		6	1.0	1.0
B733	1007	2.1	3.5	C441	2	1.0	1.0		B734	14613	3.0	4.1	PRM1	59	1.0	1.0	P46		6	1.0	1.0
B738 A319	773 719	3.4 2.0	1.8 1.1	C501 CL30	2	1.0 1.0	1.0 1.0		B733 B462	12763 10816	2.1 1.3	3.7 1.5	TBM7 A109	55 54	1.0 1.0	1.0 1.0	PUN R22	IA	6 6	1.0 1.0	1.0 1.0
MD11	525	11.1	11.3	CN35	2	1.1	1.0		CRJ2	7958	1.0	1.0	EC20	54	1.0	1.0	S60	1	6	1.0	1.0
T204	490	5.4	4.0	CRJ1	2	4.0	1.0		A321	6626	4.7	1.6	PA32	54	1.0	1.0	DHC		5	1.0	1.0
ATP A321	486 434	1.0 5.0	2.1 1.5	CRJ7 DH8A	2	1.3 1.0	1.0 2.1		F50 B738	5874 5723	1.0 3.5	1.9 1.9	BE30 B712	53 52	1.0 1.2	1.0 1.0	E12 ²		5 5	1.0 1.0	1.0 1.0
AT43	405	1.0	1.9	FA10	2	1.0	1.0		B735	5606	1.6	3.5	P180	50	1.0	1.0	AN2		4	4.0	4.8
A333	322	9.3	2.9	L101	2		6.3		B763	5193	8.6	3.0	A318	46	1.3	1.0	B407		4	1.0	1.0
MD82 F100	271 233	5.5 1.6	1.0 1.0	LJ31 MD81	2	1.0	1.0 1.0		E145 E135	4878 4323	1.0 1.0	1.0 1.0	AT72 SF34	46 46	1.1 1.0	1.0 1.0	B72° B75°		4 4	12.6 3.3	3.0 1.4
L188	215	6.1	1.8	MU2	2	1.0	1.0		MD82	4158	5.8	1.0	T154	45	13.4	6.3	BE1		4	1.0	1.0
B763	150	8.3	2.7	PA46	2		1.0		B736	3242	1.5	1.5	B06	44	1.0	1.0	C29		4	1.1	1.0
EXPL	139	1.0	1.0	SW3	2	1.0	1.0		F100	2972	1.5	1.0	J328 GLF3	44	1.0	1.1	C303		4	1.0	1.0
RJ1H CRJ2	114 110	1.6 1.0	2.3 1.0	SW4 ASTR	1	1.0	1.0		B752 AT45	2758 2445	3.1 1.0	2.7 1.0	LJ55	43 43	16.8 1.9	2.1 1.0	C310		4 4	1.0 1.0	1.0 1.0
B735	99	1.8	3.8	AT45	1		1.0		B737	2177	2.2	1.5	ATP	42	1.0	1.7	C68		4	1.0	1.0
RJ85	79	1.4	2.1	B743	1	48.4			B744	2156	24.8	8.9	C160	42			EC3		4	1.0	1.0
B462 B736	74 52	1.3 2.1	1.5 1.4	B74S B772	1	12.2	7.1		F70 EXPL	1868 1796	1.1 1.0	1.0 1.0	AN26 LJ31	40 38	3.0 1.0	2.0 1.0	F406		4 4	1.0	1.0
LJ45	51	1.0	1.0	BE9L	1	14.4	1.0	l	JS41	1491	1.1	1.0	C17	37	1.0	1.0	IL62		4	38.0	7.2
BE20	47	1.0	1.0	C182	1		1.0	l	A333	1486	9.5	2.9	PA34	36	1.0	1.0	MU3		4	1.0	1.0
F50	46 45	1.0	1.9	C551	1	1.0	1.0	l	MD11	1465	11.0	11.0	C425	34	1.0	1.0	P28		4	1.0	1.0
C56X C130	45 44	1.0 11.0	1.0 2.6	CRJ9 D228	1		1.0 1.0		C130 CRJ7	1436 1360	11.7 1.3	2.6 1.0	BE9T MD90	32 32	1.0 1.2	1.0 1.0	P32I B743		4 3	1.0 47.0	1.0 8.1
A310	43	6.4	4.5	DC87	1		2.7		D328	1317	1.0	1.2	SW3	32	1.0	1.0	DC8	7	3	7.8	2.8
C560	42	1.0	1.0	E121	1		1.0		B742	1274	58.3	12.6	C500	31	1.0	1.0	A342		2	9.1	2.1
B744 C525	40 38	22.3 1.0	8.3 1.0	GALX GLF3	1		1.0		MD87 DC10	1203 1201	4.4 19.6	1.0 15.2	ASTR ALO3	29 28	1.0 1.0	1.0 1.0	A348 AC1		2	8.9 1.0	1.0 1.0
C550	34	1.0	1.0	JS32	1		1.0		E170	1075	1.9	1.2	AS55	28	1.0	1.0	AN7		2	3.1	1.0
E145	32	1.0	1.0	JS41	1	1.1			C550	1002	1.0	1.0	B703	28			B222		2	1.0	1.0
E135 F2TH	28 26	1.0 2.0	1.0 1.1	LJ55 PA31	1	1.8 1.0			C56X SW4	994 968	1.0 1.0	1.0 1.0	CN35 T204	28 28	1.1 5.3	1.0 2.1	BA1 BE6		2	1.0	1.0
B737	24	2.4	1.6	PAY4	1	1.0	1.0		LJ45	853	1.0	1.0	GALX	23	1.0	1.0	BK1		2	1.0	1.0
H25B	23	1.1	1.4	PRM1	1	1.0			A332	797	9.6	2.3	B741	22	69.2	11.6	BN2		2	1.0	1.0
CL60	20	1.1	1.0	SBR1	1		1.0		F900	758	1.1	1.0	C30J	22	11.9	2.6	C17		2	1.0	1.0
F900 A306	19 17	1.1 9.5	1.0 4.1	T154 TBM7	1		1.0		SB20 B764	753 716	1.0 7.9	1.0 3.0	CL30 EC35	22 22	1.0 1.0	1.0 1.0	C210		2	1.0 1.0	1.0 1.0
FA50	17	2.0	2.1	YK42	1		3.6		A30B	678	10.5	6.4	PA31	21	1.0	1.0	DC3		2	1.0	1.0
C25A	16	1.0	1.0	NO ID	2				C560	651	1.0	1.0	PA46	21	1.0	1.0	E3C		2		
FA20 GLF4	16 14	1.3 1.0	1.0						CL60 CRJ1	624 586	1.1 1.0	1.0 1.0	C501 AN12	20 19	1.0 12.0	1.0 6.3	E3TI F27		2	2.1	1.0
MD83	14	8.1	1.0						FA20	569	1.4	1.0	D228	19	1.0	1.0	F28		2	2.1	1.0
DC10	13	20.4	15.5						BE20	568	1.0	1.0	PAY3	19	1.0	1.0	H25		2		
PAY3	13 10	1.0	1.0						H25B	545 526	1.1	1.4	YK42	19	6.0	5.2	H250		2	1.0	1.0
C750 BE30	9	1.0 1.0	1.0 1.0						MD52 A310	505	1.0 6.7	1.0 3.8	ALO2 PAY4	18 17	1.0 1.0	1.0 1.0	K35I MU2		2	1.0	1.0
C404	9	1.0	1.0						CRJ9	493	1.3	1.0	A343	16	11.6	1.9	PA3		2	1.0	1.0
E170	9	2.0	1.2						MD81	482	4.8	1.0	AS65	16	1.0	1.0	S650		2	1.0	1.0
C340 GLF5	8 8	1.0 1.3	1.0 1.0						F2TH B732	473 440	1.7 8.0	1.2 1.6	S61 C404	16 15	1.0 1.0	1.0 1.0	TOB UH1	A	2 2	1.0 1.0	1.0 1.0
LJ35	8	1.0	1.0						LJ60	423	1.0	1.0	C441	15	1.0	1.0	NO I	D	6		
B190	7	1.0	1.0					Ì	C525	413	1.0	1.0	DH8C	14	1.1	2.7					
B350 BE40	7 7	1.0 1.0	1.0 1.0						FA50 DH8D	387 350	2.0 1.0	2.1 1.1	JS31 EC55	14 12	1.0 1.0	1.0 1.0					
LJ60	7	1.0	1.0						GLF4	338	1.0	1.0	H60	12	1.0	1.0					
AN72	6	3.1	1.0						B190	303	1.0	1.0	B772	11	10.6	3.2					
B463	6	1.4	1.4						PC12	295	1.0	1.0	AN30	10	1.0	1.0					
C650 MD90	6 6	1.3 1.2	1.0						GLF5 B463	256 238	1.2 1.4	1.0 1.5	AS50 B722	10 10	1.0 19.3	1.0 4.4					
B742	5	67.6	11.8						LJ35	222	1.0	1.0	BE58	10	1.0	1.0					
C500	5	1.0	1.0						C551	201	1.0	1.0	C340	10	1.0	1.0					
GLEX SC7	5 5	1.2 1.0	1.0 1.0						BE40 A306	198 195	1.0 9.6	1.0 3.7	E120 DC86	10 9	1.0 33.9	1.0 6.5					
D328	4	1.0	1.1					l	C25A	172	1.0	1.0	SC7	9	1.0	1.0					
MD88	4	7.9	1.4						C182	169	1.0	1.0	AC95	8	1.0	1.0					
PC12 SF34	4 4	1.0	1.0					l	FA10 L101	160 144	1.0 22.2	1.0	AS32 C152	8	1.0	1.0					
SF34 YK40	4	1.0	1.0						L101 AT43	144 141	1.0	6.3 1.9	C152 C208	8	1.0 1.0	1.0 1.0					
A109	4		1.0						B350	141	1.0	1.0	DC93	8							
A332	3	7.9	1.9						P68	140	1.0	1.0	GL5T	8	1.0	1.0					
AN12 B762	3 3	8.7 7.7	8.7 6.5					Ì	C750 BE9L	132 115	1.0 1.0	1.0 1.0	L410 LYNX	8 8	1.0 1.0	1.0 1.0					
C17	3	,.,	0.0						L188	111	6.1	1.8	P28A	8	1.0	1.0					
DHC6	3	1.0	1.0						JS32	109	1.0	1.0	PAY2	8	1.0	1.0					
MD87 PAY1	3 3	4.2 1.0	1.0 1.0						R44 YK40	102 100	1.0	1.0	SR22 B743	8 7	1.0 53.1	1.0 12.7					
SB20	3	1.0	1.0						B461	96	1.0	1.3	SBR1	7	2.2	1.0					
AN26	2			TOT	24759	4.8	3.6	1	C650	96	1.7	1.0	AC90	6	1.0	1.0	TOT		229995	3.1	2.2

QCD quota de bruit (QC) moyen au décollage de tous les décollages effectués sur Brussels Airport en 2005 pendant la période d'observation QCA quota de bruit (QC) moyen à l'atterrissage de tous les atterrissages effectués sur Brussels Airport en 2005 pendant la période d'observation

Surveillance du bruit – Brussels Airport

Rapport annuel 2006

Annexe B

New Control Tower AMS

Distribution SID / RWY 2006; 06:00 - 23:00 Hr LT Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
CIV1C	13953	25						13978
CIV1E	3669	17						3686
CIV2Q CIV3H		1		1	-			1
CIV3I1			150	'				150
CIV4H			2	134				136
CIV4J			2785	66		440		2851
CIV5F CIV6L					110	112		112 110
CIV7D	16				110			16
CIV7L					1842			1842
CIV9C	621	4						625
DENUT2C DENUT2F	339	11			-	10		350 10
DENUT2H			86	12		10		98
DENUT2L					20			20
DENUT2N	7077	00			63			63
DENUT3C DENUT3F	7277	89			1	140		7367 140
DENUT3H			133	31		140		164
DENUT3L					274			274
DENUT4F			105	40		433		433 243
DENUT4H DENUT5F			195	48	+	137		137
ELSIK1H			1		†	1		2
ELSIK2C	43							43
HELEN2C	427					17		427 17
HELEN2F HELEN2H			119	2	1	17		121
HELEN2L					41			41
HELEN2N					106			106
HELEN3F	9555	10			+	202		9565 202
HELEN3H			173	9		202		182
HELEN3L					565			565
HELEN4F						596		596
HELEN4H HELEN5F			294	52	1	188		346 188
KOK1C	19					100		19
KOK1F						43		43
KOK1H	40.4	4	18	2				20
KOK2C KOK3L	464	1			1			465 1
KOK4L					30			30
LNO1C	111							111
LNO1D	2			0				2
LNO1H LNO1J			7	2	-			7
LNO2C	2174		,		†			2174
LNO2D	28							28
LNO2H LNO2J			354	45				45 354
LNO3F			334		+	5		5
LNO3L					5			5
LNO3Z	1				1			1
LNO4L NIK1C	430		1		158			158 430
NIK1C NIK1F	700					4	<u> </u>	430
NIK1H			734	85				819
NIK1L	OFF4				29			29
NIK2C NIK2F	9551	9			1	712		9560 712
NIK2L					428	49		477
NIK2N					68	13		81
NIK4Z	1 727	5	20	70	84	13	7	026
NO SID PITES 3L	121	3	20	70	40	13	7	926 40
PITES1C	18							18
PITES1J			2					2
PITES1L PITES2C	107				4			4 107
PITES2U PITES2J	107		49		+		1	49
PITES2L			10		23			23
PITES3C	556	1						557
PITES3D	3				1	4.4	ļ	3
PITES3F PITES3H				12	+	14	+	14 12
PITES3J			86	- '-	1			86
PITES3L		_			257			257
ROUSY1C	397	3	<u> </u>	<u> </u>	1			400

TOTAL	90759	289	11344	1273	9979	2924	7	116575
SPI4Z	5							5
SPI3L					812			812
SPI3H				47		_		47
SPI3F						35		35
SPI2Q		2						2
SPI2L				17				17
SPI2J			942					942
SPI2H				1				1
SPI2D	69	2						71
SPI2C	6368		70					6368
SPI1J	200		46					46
SPI1C	263							263
SOPOK4Z	8					100		8
SOPOK3F	0.10					153		153
SOPOK3D	949	12						961
SOPOK3C	23633	62			0000			23695
SOPOK2L	1		3310		3633			3634
SOPOK2J			3616					3616
SOPOK2H			1	528				529
SOPOK2D	48							48
SOPOK2C	947	6						953
SOPOK1L					87			87
SOPOK1J			169					169
SOPOK1H				4				4
ROUSY3Z	5				_			5
ROUSY3N					2			2
ROUSY3L					1209			1209
ROUSY3J			588					588
ROUSY3H				74		.,		74
ROUSY3F	Ŭ.	Ť				46		46
ROUSY3D	31	3						34
ROUSY3C	6357	26			- 00			6383
ROUSY2L					56			56
ROUSY2J			707	2				709
ROUSY2H				29		-		29
ROUSY2F	_					1		1
ROUSY2D	8							8
ROUSY2C	1578							1578
ROUSY1L			· · ·		31			31
ROUSY1J			67					67

New Control Tower AMS

Distribution SID / RWY 2006; 23:00 - 06:00 Hr LT

Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
CIV1C	116	2						118
CIV1E	11	1						12
CIV1Q		3						3
CIV2Q		46						46
CIV3J			31					31
CIV4H			400	1				1
CIV4J			420			0		420
CIV5F CIV6D	39					9	-	9 39
CIV6D CIV7D	1153							1153
CIV7L	1100				66			66
CIV9C	2				- 00			2
DENUT1N					3			3
DENUT2C	23	İ	1		<u> </u>	İ	1	23
DENUT2F						5		5
DENUT2H				17				17
DENUT2N					98			98
DENUT3C	692	2						694
DENUT3F						13		13
DENUT3H			3	49				52
DENUT4F						53		53
DENUT4H				105				105
DENUT5F	0.4					9		9
HELEN2C	24	 	 	1	 	1	1	24 4
HELEN2F HELEN2H		 	 	32	 	4	+	32
HELEN2N		 	 	32	32		+	32
HELEN3C	502	8	 	1	32	+	+	510
HELEN3F	JUZ		 	1	 	15	+	15
HELEN3H		-	2	34	-		+ -	36
HELEN4F			_	Ŭ.		52		52
HELEN4H		İ	1	92	1		1	93
HELEN5F						7		7
KOK1C	1							1
KOK1F						1		1
KOK2C	6							6
KOK3L					1			1
LNO1J			16					16
LNO2C	1							1
LNO2D	1							1
LNO2H			227	2				2
LNO2J LNO2Q		14	227		-	1		227 14
LNO2Q LNO2Z	9	14					+	9
LNO3F	3					6		6
LNO3L					34			34
LNO3Z	236				- 57			236
LNO4L	200				553			553
NIK1C		2	1			İ	1	2
NIK1F						2		2
NIK1H			17	236				253
NIK1N					4			4
NIK2C	4	40						44
NIK2F						25		25
NIK2L					3			3
NIK2N	00				78		1	78
NIK3Z	28	ļ	-		-	<u> </u>	1	28
NIK4Z NO SID	759 7	2	 	1	4	1	1	759 16
PITES2C	7	1	1		4	 		16
PITES2J		 '	1	1	 	+	+	1
PITES3C	4	16	 '	1	 	 	+	20
PITES3F						1	+	1
PITES3J		1	12	1	1	<u> </u>		12
PITES3L		1	†	3	5		1	8
PITES3N				5	32			37
PITES3Z	17							17
PTES3Z	2							2
ROUSY1J			22					22
ROUSY1L					1			1
	1	4						5
ROUSY2C		<u> </u>		1	<u> </u>			1
ROUSY2H		1	83		<u> </u>	ļ		83
ROUSY2H ROUSY2J			•	l	3			3
ROUSY2H ROUSY2J ROUSY2L					10			
ROUSY2H ROUSY2J ROUSY2L ROUSY2N	4				19			19
ROUSY2H ROUSY2J ROUSY2L ROUSY2N ROUSY2Z	4	20			19			19 4
ROUSY2H ROUSY2J ROUSY2L ROUSY2N ROUSY2Z ROUSY3C	4	28			19	4		19 4 28
ROUSY2H ROUSY2J ROUSY2L ROUSY2N ROUSY2Z	4	28	111		19	1 4		19 4

ROUSY3N					314			314
ROUSY3Z	138							138
ROUZY3C	2	26						28
SOPOK1H				2				2
SOPOK1J			31					31
SOPOK1L					45			45
SOPOK2C		2						2
SOPOK2H				16				16
SOPOK2J			466	1				467
SOPOK2L			1		1120			1121
SOPOK3C	19	43						62
SOPOK3D	3							3
SOPOK3F						11		11
SOPOK3Z	11							11
SOPOK4Z	450							450
SPI2C	3							3
SPI2J			5					5
SPI2L					1			1
SPI2O		1						1
SPI2Q		2						2
SPI3H				3				3
SPI3L					33	2		35
SPI3Z	2							2
SPI4Z	13							13
TOTAL	4283	243	1449	600	2477	221	1	9274

Remark: A night is always calculated from 23:00 - 0600 Hr LT.
For the statistics, the period from 00:00 - 06:00 Hr belongs to the night of the previous day (the red line indicates the counted period for December 2006, starts at 23:00 on 01/12/2006 and stops at 06:00 on 01/01/2007).

New Control Tower AMS

Distribution SID / RWY 2006; 00:00 - 23:59 Hr LT Not helicopters, not missed approaches

SID	25R	25L	07R	07L	20	02	NO RWY	TOTAL
CIV1C	14067	27						14094
CIV1E CIV1Q	3680	18 3						3698 3
CIV1Q CIV2Q		47						47
CIV3H				1				1
CIV3J			181	105				181
CIV4H CIV4J			2 3212	135				137 3278
CIV45 CIV5F			3212	66		121		121
CIV6D	39							39
CIV6L					110			110
CIV7D CIV7L	1168				1908		1	1168 1908
CIV/L CIV9C	623	4			1908		1	627
DENUT1N	020				3			3
DENUT2C	362	11						373
DENUT2F			0.0	20		15		15
DENUT2H DENUT2L			86	29	20			115 20
DENUT2N					159			159
DENUT3C	7971	91			1			8063
DENUT3F			400	0.4		153		153
DENUT3H DENUT3L			136	84	274			220 274
DENUT4F					214	486	+	486
DENUT4H			195	153				348
DENUT5F						146		146
ELSIK1H	40		1			1		2
ELSIK2C HELEN2C	43 451							43 451
HELEN2F	701					21	+	21
HELEN2H			119	34				153
HELEN2L					41			41
HELEN2N HELEN3C	10056	18			138			138 10074
HELEN3F	10030	10				217		217
HELEN3H			175	45				220
HELEN3L					565			565
HELEN4F			295	144		648		648 439
HELEN4H HELEN5F			295	144		195	1	195
KOK1C	20							20
KOK1F						44		44
KOK1H	470	1	18	2			1	20
KOK2C KOK3L	470	1				2	+	471 2
KOK4L					30			30
LNO1C	111							111
LNO1D	2			2				2
LNO1H LNO1J			23	2				23
LNO2C	2175		20					2175
LNO2D	29							29
LNO2H			504	47				47
LNO2J LNO2Q		14	584					584 14
LNO2Z	9	17						9
LNO3F						11		11
LNO3L	242				39			39
LNO3Z LNO4L	240		1		711			240 711
NIK1C	430	2			, , , ,			432
NIK1F						6		6
NIK1H	-		740	336	00			1076
NIK1L NIK1N					29 4		+	29 4
NIK1N NIK2C	9555	49	1		+		+	9604
NIK2F						737		737
NIK2L					431	49		480
NIK2N	20				146	13		159
	28 760		1					28 760
NIK3Z		7	20	71	88	14	8	942
NIK4Z	734		 		40		_	40
NIK4Z NO SID PITES 3L	-							
NIK4Z NO SID PITES 3L PITES1C	18							18
NIK4Z NO SID PITES 3L PITES1C PITES1J	-		2		4			18 2
NIK4Z NO SID PITES 3L PITES1C PITES1J PITES1L	18	1	2		4			18 2 4
NIK4Z NO SID PITES 3L PITES1C PITES1J	-	1	2 50		4			18 2

DITECOO	500	47	1		T		ı	7
PITES3C	560	17						577
PITES3D	3					45		3
PITES3F				40		15		15
PITES3H			00	12				12
PITES3J			98		000			98
PITES3L				3	262			265
PITES3N				5	32			37
PITES3Z	19							19
ROUSY1C	397	3						400
ROUSY1J			89					89
ROUSY1L					32			32
ROUSY2C	1599	4						1603
ROUSY2D	8							8
ROUSY2F						1		1
ROUSY2H				30				30
ROUSY2J			790	2				792
ROUSY2L					59			59
ROUSY2N					19			19
ROUSY2Z	4							4
ROUSY3C	6359	80						6439
ROUSY3D	34							34
ROUSY3F		1				51		51
ROUSY3H				74				74
ROUSY3J			701					701
ROUSY3L					1237			1237
ROUSY3N			1		315			315
ROUSY3Z	143				0.10			143
SOPOK1H	140			6				6
SOPOK1J			200					200
SOPOK1L			200		132			132
SOPOK2C	947	8			102			955
SOPOK2D	48	0						48
SOPOK2H	40		1	544				545
SOPOK2J			4090	1				4091
SOPOK25	1		1	<u> </u>	4750			4752
SOPOK3C	23652	105	1		4730			23757
SOPOK3D	952	12				164		964
SOPOK3F	11					164		164
SOPOK3Z	11							11
SOPOK4Z	459							459
SPI1C	263		40		ļ			263
SPI1J	00=1		46		ļ			46
SPI2C	6371							6371
SPI2D	69	2						71
SPI2H				1				11
SPI2J			947					947
SPI2L					18			18
SPI2O		1						1
SPI2Q		4						4
SPI3F						35		35
SPI3H				50				50
SPI3L					846	2		848
SPI3Z	2							2
SPI4Z	20							20
TOTAL	95069	529	12802	1877	12466	3147	8	125898

Surveillance du bruit – Brussels Airport

Rapport annuel 2006

Annexe C

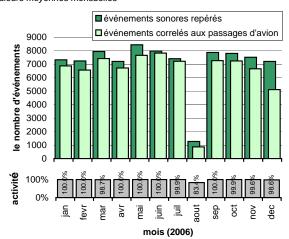
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.5%	98.1%	98.3%
le nombre total des événements sonores repérés	77807	7288	85095
le nombre des événements correlés aux passages d'avion	71778	5558	77336
rapport [%] (taux de corrélation)	92.3%	76.3%	90.9%

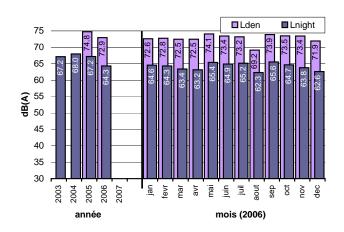
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	70.3
Levening	19-23 h	70.0
Lnight	23-07 h	64.3
Lden		72.9

tranches horaires d'après des critères opérationnels

transcribe meranec a	aproc acc cincino	operationing
LAeq,jour	06-23 h	70.1
LAeq,nuit	23-06 h	64.0
LDN		71.6


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

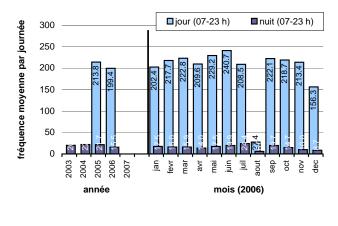
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

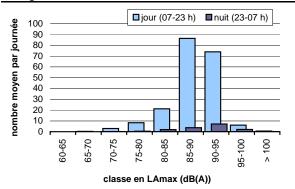
sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.3	0.0	0.3
70-75	3.0	0.1	3.1
75-80	8.2	0.5	8.7
80-85	21.2	1.9	23.2
85-90	86.3	3.7	90.1
90-95	73.9	7.2	81.2
95-100	6.1	2.0	8.2
> 100	0.7	0.1	0.7
Totaal	199.7	15.5	215.5


La fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles


nxLAmax>70, jour	07-23 h	199.4
nxLAmax>70, nuit	23-07 h	15.5

Evolution de la fréquence de dépassement nxLAmax>70

200 | 26.2 | 3.7 | 20.1

Histogramme

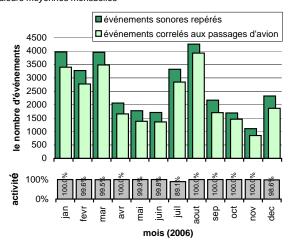
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.9%	98.8%	98.9%
le nombre total des événements sonores repérés	26091	5511	31602
le nombre des événements correlés aux passages d'avion	22143	4559	26702
rapport [%] (taux de corrélation)	84.9%	82.7%	84.5%

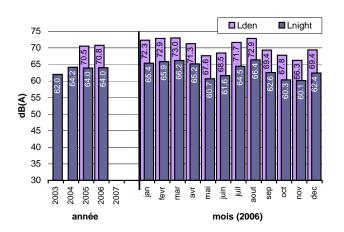
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	66.2
Levening	19-23 h	64.6
Lnight	23-07 h	64.0
Lden		70.8

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	65.8
LAeq,nuit	23-06 h	63.8
LDN		69.9

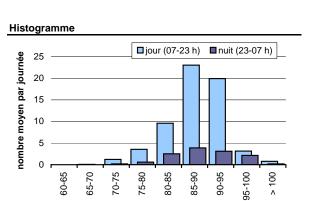

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

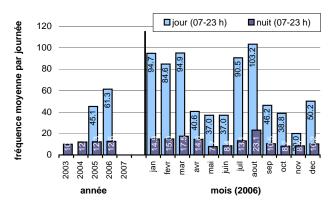

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.1	0.0	0.1
70-75	1.2	0.2	1.4
75-80	3.6	0.6	4.1
80-85	9.6	2.5	12.1
85-90	23.0	3.9	26.9
90-95	19.9	3.1	23.1
95-100	3.1	2.1	5.3
> 100	0.8	0.2	1.0
Totaal	61.4	12.6	74.0

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	61.3
nxLAmax>70, nuit	23-07 h	12.6



classe en LAmax (dB(A))

nxLAmax>70, jour	07-23 h	61.3
nxLAmax>70, nuit	23-07 h	12.6

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

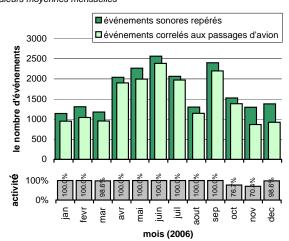
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	95.6%	95.1%	95.4%
le nombre total des événements sonores repérés	18627	1821	20448
le nombre des événements correlés aux passages d'avion	16329	1377	17706
rapport [%] (taux de corrélation)	87.7%	75.6%	86.6%

Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	53.3
Levening	19-23 h	52.3
Lnight	23-07 h	46.5
Lden		55.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	53.2
LAeq,nuit	23-06 h	35.0
LDN		52.0

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

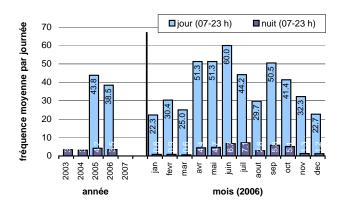
Evolution des indicateurs Lden en Lnight

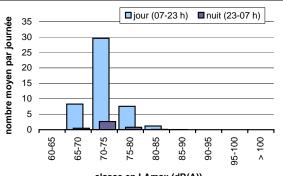
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	8.3	0.5	8.8
70-75	29.6	2.6	32.3
75-80	7.6	0.8	8.3
80-85	1.2	0.1	1.3
85-90	0.1	0.0	0.1
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	46.8	4.0	50.9


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	38.5
nxLAmax>70, nuit	23-07 h	3.5

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

classe en LAmax (dB(A))

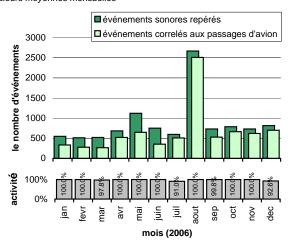
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.6%	98.3%	98.4%
le nombre total des événements sonores repérés	7911	2553	10464
le nombre des événements correlés aux passages d'avion	5503	2434	7937
rapport [%] (taux de corrélation)	69.6%	95.3%	75.9%

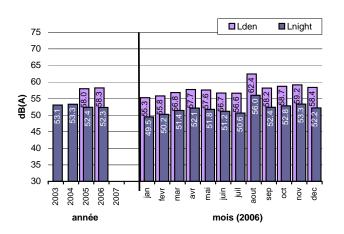
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	51.4
Levening	19-23 h	47.5
Lnight	23-07 h	52.3
Lden		58.3

tranches horaires d'après des critères opérationnels

tranonos noranos a apros ass sinoros operationnos				
LAeq,jour	06-23 h	51.0		
LAeq,nuit	23-06 h	52.0		
LDN		57.4		


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

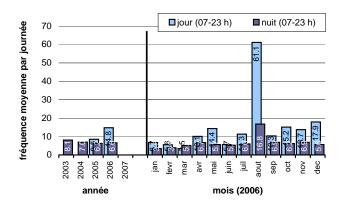
Evolution des indicateurs Lden en Lnight

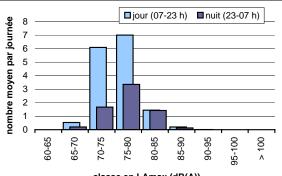
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée				nombre moyen par jo	
LAmax	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h			
60-65	0.0	0.0	0.0			
65-70	0.5	0.2	0.7			
70-75	6.1	1.7	7.8			
75-80	7.0	3.3	10.4			
80-85	1.4	1.4	2.9			
85-90	0.2	0.1	0.3			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	15.3	6.8	22.1			


La fréquence de dépassement nxLAmax>70

1.4 70 :	07.00.1	44.0
nxLAmax>70, jour	07-23 h	14.8
nxLAmax>70, nuit	23-07 h	6.6

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

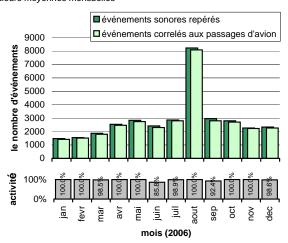
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	97.9%	97.8%	97.9%
le nombre total des événements sonores repérés	24320	9826	34146
le nombre des événements correlés aux passages d'avion	23471	9645	33116
rapport [%] (taux de corrélation)	96.5%	98.2%	97.0%

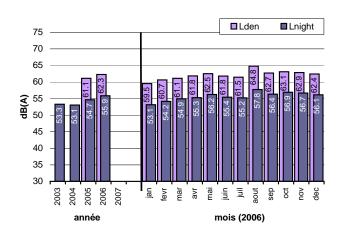
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	56.3
Levening	19-23 h	55.6
Lnight	23-07 h	55.9
Lden		62.3

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	56.0		
LAeq,nuit	23-06 h	56.2		
LDN		61.7		


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

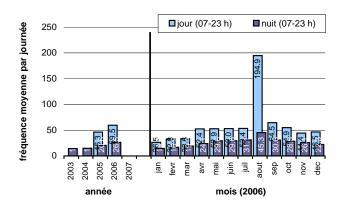
Evolution des indicateurs Lden en Lnight

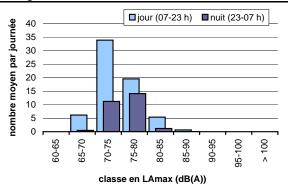
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée				nombre moyen par journée		
LAmax	jour	jour nuit journé					
dB(A)	07-23 h	23-07 h	24h				
60-65	0.0	0.0	0.0				
65-70	6.2	0.5	6.7				
70-75	33.9	11.2	45.1				
75-80	19.5	14.1	33.6				
80-85	5.4	1.2	6.6				
85-90	0.6	0.1	0.7				
90-95	0.0	0.0	0.0				
95-100	0.0	0.0	0.0				
> 100	0.0	0.0	0.0				
Totaal	65.7	27.0	92.7				


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	59.5
nxLAmax>70, nuit	23-07 h	26.5

valeurs moyennes mensuelles et annuelles

Evolution de la fréquence de dépassement nxLAmax>70

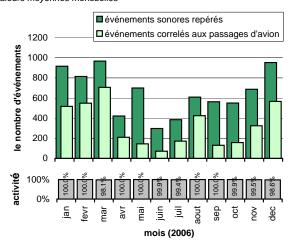
Surveillance du bruit - Brussels Airport Rapport annuel 2006

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.7%	99.5%	99.6%
le nombre total des événements sonores repérés	6675	1185	7860
le nombre des événements correlés aux passages d'avion	3473	500	3973
rapport [%] (taux de corrélation)	52.0%	42.2%	50.5%

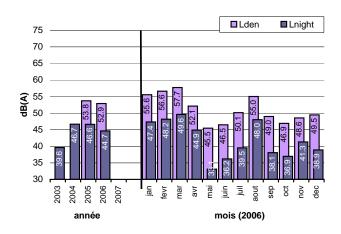
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	50.5
Levening	19-23 h	49.0
Lnight	23-07 h	44.7
Lden		52.9

tranches horaires d'après des critères opérationnels

•		•
LAeq,jour	06-23 h	50.0
LAeq,nuit	23-06 h	44.5
LDN		51.9


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

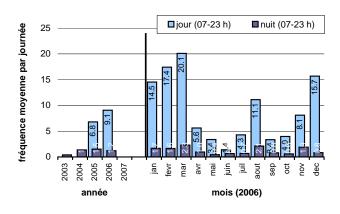
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

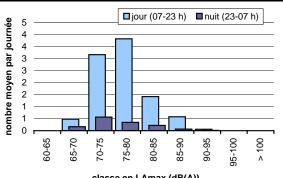
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	jour nuit journé		
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	0.5	0.2	0.6	
70-75	3.2	0.6	3.7	
75-80	3.8	0.3	4.2	
80-85	1.4	0.2	1.6	
85-90	0.6	0.1	0.6	
90-95	0.1	0.0	0.1	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	9.5	1.4	10.9	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	9.1
nxLAmax>70, nuit	23-07 h	1.2

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

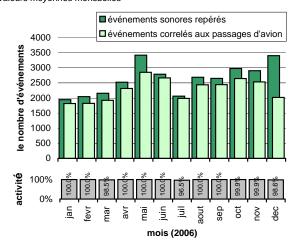
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.7%	99.2%	99.4%
le nombre total des événements sonores repérés	27550	3997	31547
le nombre des événements correlés aux passages d'avion	24089	3355	27444
rapport [%] (taux de corrélation)	87.4%	83.9%	87.0%

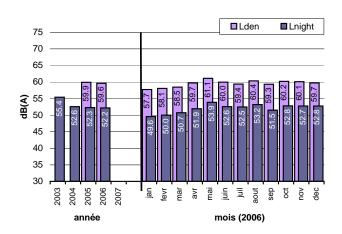
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	56.3
Levening	19-23 h	54.6
Lnight	23-07 h	52.2
Lden		59.6

tranches horaires d'après des critères opérationnels

transcribe meranes a apres acc enteres operationing			
LAeq,jour	06-23 h	56.0	
LAeq,nuit	23-06 h	51.0	
LDN		58.1	


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

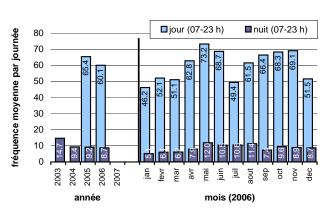
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

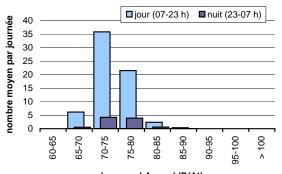
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	jour nuit jouri		
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	6.2	0.5	6.7	
70-75	35.8	4.2	40.1	
75-80	21.5	3.9	25.4	
80-85	2.4	0.6	2.9	
85-90	0.4	0.1	0.5	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	66.2	9.3	75.6	

La fréquence de dépassement nxLAmax>70


valeurs moyennes mensuelles et annuelles

nxLAmax>70, jour	07-23 h	60.1
nxLAmax>70, nuit	23-07 h	8.7

Evolution de la fréquence de dépassement nxLAmax>70

Histogramme

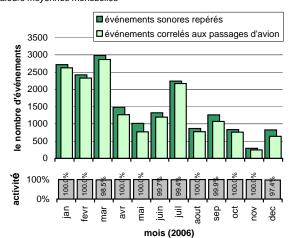
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.6%	99.5%	99.6%
le nombre total des événements sonores repérés	15869	2392	18261
le nombre des événements correlés aux passages d'avion	14520	2187	16707
rapport [%] (taux de corrélation)	91.5%	91.4%	91.5%

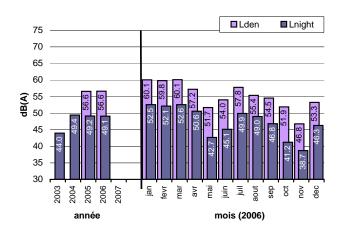
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	53.2
Levening	19-23 h	52.2
Lnight	23-07 h	49.1
Lden		56.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	52.9
LAeq,nuit	23-06 h	48.7
LDN		55.5

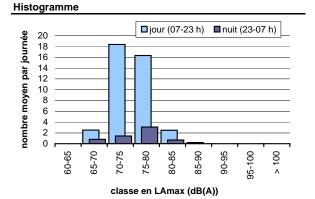

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

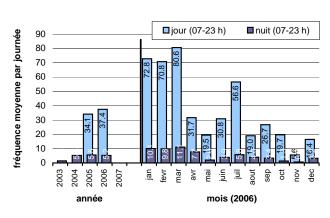
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	2.5	0.8	3.3
70-75	18.4	1.4	19.8
75-80	16.3	3.1	19.4
80-85	2.5	0.7	3.2
85-90	0.2	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	39.9	6.0	46.0

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	37.4
nxLAmax>70, nuit	23-07 h	5.2

Evolution de la fréquence de dépassement nxLAmax>70

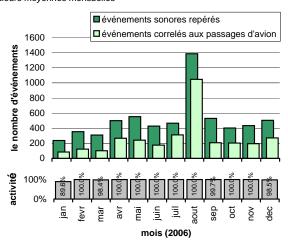
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.0%	98.7%	98.8%
le nombre total des événements sonores repérés	4488	1617	6105
le nombre des événements correlés aux passages d'avion	1971	1256	3227
rapport [%] (taux de corrélation)	43.9%	77.7%	52.9%

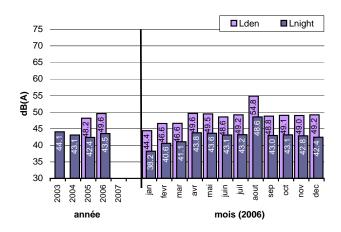
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	43.3
Levening	19-23 h	39.6
Lnight	23-07 h	43.5
Lden		49.6

tranches horaires d'après des critères opérationnels

<u> </u>		
LAeq,jour	06-23 h	43.1
LAeq,nuit	23-06 h	42.6
LDN		48.3


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

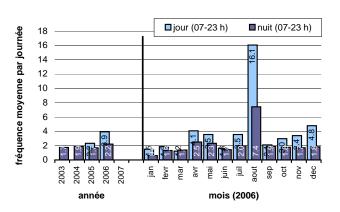
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	1.5	1.3	2.8
70-75	3.1	1.9	5.0
75-80	0.8	0.3	1.1
80-85	0.1	0.0	0.1
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	5.5	3.5	8.9


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	3.9
nxLAmax>70, nuit	23-07 h	2.2

Histogramme □ jour (07-23 h) ■ nuit (23-07 h) nombre moyen par journée 3 3 2 2 1 0 60-65 65-70 70-75 100 ^

classe en LAmax (dB(A))

Evolution de la fréquence de dépassement nxLAmax>70 valeurs moyennes mensuelles et annuelles

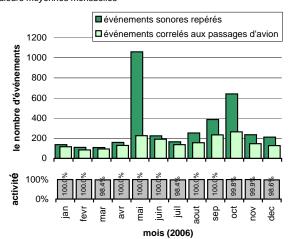
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.7%	99.5%	99.6%
le nombre total des événements sonores repérés	3337	353	3690
le nombre des événements correlés aux passages d'avion	1749	153	1902
rapport [%] (taux de corrélation)	52.4%	43.3%	51.5%

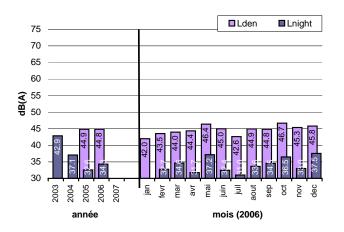
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	43.0
Levening	19-23 h	43.4
Lnight	23-07 h	34.3
Lden		44.8

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	42.9
LAeq,nuit	23-06 h	34.5
LDN		43.4

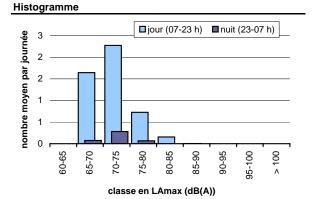

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

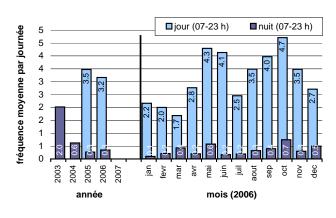
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	1.6	0.1	1.7
70-75	2.3	0.3	2.6
75-80	0.7	0.1	0.8
80-85	0.2	0.0	0.2
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	4.8	0.4	5.2

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	3.2
nxLAmax>70, nuit	23-07 h	0.3

Evolution de la fréquence de dépassement nxLAmax>70

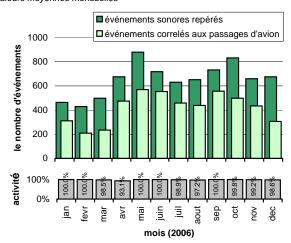
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.9%	98.6%	98.8%
le nombre total des événements sonores repérés	6787	1058	7845
le nombre des événements correlés aux passages d'avion	4243	798	5041
rapport [%] (taux de corrélation)	62.5%	75.4%	64.3%

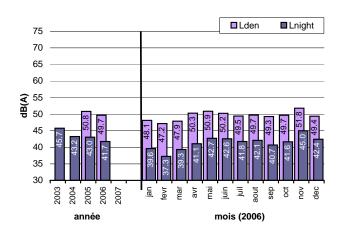
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	47.6
Levening	19-23 h	44.2
Lnight	23-07 h	41.7
Lden		49.7

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	47.0
LAeq,nuit	23-06 h	40.4
LDN		48.3


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

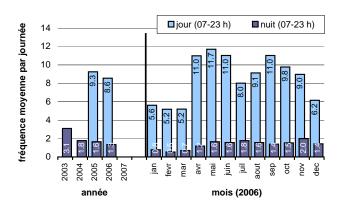
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

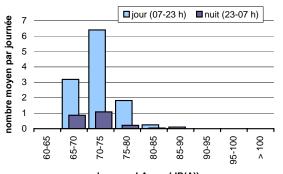
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	jour nuit journé		
dB(A)	07-23 h	23-07 h	24h	
60-65	0.0	0.0	0.0	
65-70	3.2	0.9	4.1	
70-75	6.4	1.1	7.5	
75-80	1.8	0.2	2.0	
80-85	0.2	0.0	0.3	
85-90	0.1	0.0	0.1	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	11.8	2.2	14.0	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	8.6
nxLAmax>70, nuit	23-07 h	1.3

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	96.8%	97.3%	97.0%
le nombre total des événements sonores repérés	54509	4608	59117
le nombre des événements correlés aux passages d'avion	53400	4420	57820
rapport [%] (taux de corrélation)	98.0%	95.9%	97.8%

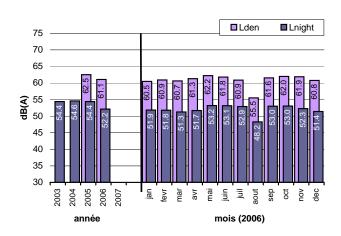
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE

Lday	07-19 h	58.5
Levening	19-23 h	58.5
Lnight	23-07 h	52.2
Lden		61.1

tranches horaires d'après des critères opérationnels

		_
LAeq,jour	06-23 h	58.4
LAeq,nuit	23-06 h	51.8
LDN		59.7

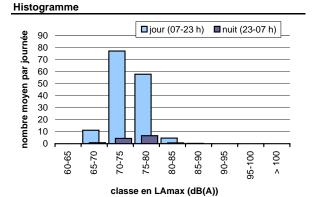

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

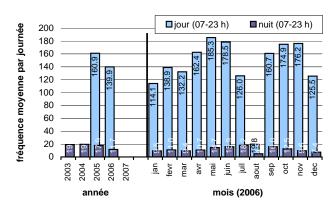
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée				nombre moyen par	
LAmax	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h			
60-65	0.0	0.0	0.0			
65-70	11.3	0.8	12.0			
70-75	77.2	4.4	81.4			
75-80	57.9	6.7	64.4			
80-85	4.6	0.6	5.2			
85-90	0.2	0.0	0.2			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	151.2	12.5	163.3			


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	139.9
nxLAmax>70, nuit	23-07 h	11.7

nxLAmax>70, jour	07-23 h	139.9
nxLAmax>70, nuit	23-07 h	11.7

Evolution de la fréquence de dépassement nxLAmax>70

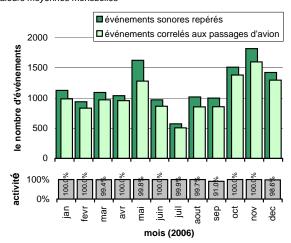
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.2%	98.9%	99.0%
le nombre total des événements sonores repérés	11678	2450	14128
le nombre des événements correlés aux passages d'avion	10186	2187	12373
rapport [%] (taux de corrélation)	87.2%	89.3%	87.6%

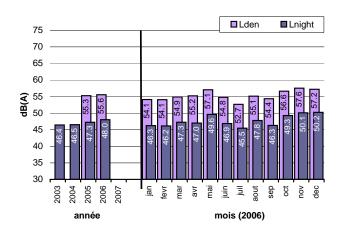
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.1
Levening	19-23 h	51.1
Lnight	23-07 h	48.0
Lden		55.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	51.8
LAeq,nuit	23-06 h	47.7
LDN		54.5

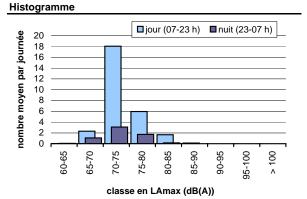

Evolution du nombre des événements sonores

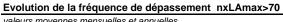
valeurs moyennes mensuelles

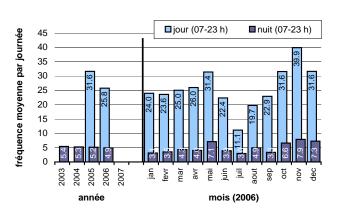
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)


Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			nombre moyen par jourr	
LAmax	jour	nuit	journée		
dB(A)	07-23 h	23-07 h	24h		
60-65	0.0	0.0	0.1		
65-70	2.3	1.1	3.4		
70-75	18.0	3.1	21.2		
75-80	6.0	1.7	7.7		
80-85	1.7	0.1	1.8		
85-90	0.1	0.0	0.1		
90-95	0.0	0.0	0.0		
95-100	0.0	0.0	0.0		
> 100	0.0	0.0	0.0		
Totaal	28.1	6.1	34.2		

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	25.8
nxLAmax>70, nuit	23-07 h	4.9

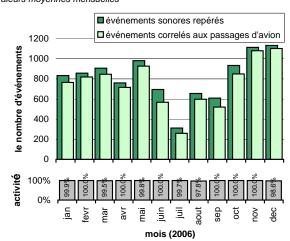
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.8%	99.4%	99.6%
le nombre total des événements sonores repérés	8087	1696	9783
le nombre des événements correlés aux passages d'avion	7454	1590	9044
rapport [%] (taux de corrélation)	92.2%	93.8%	92.4%

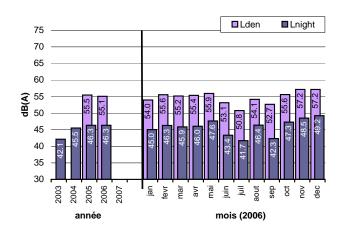
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.6
Levening	19-23 h	52.2
Lnight	23-07 h	46.3
Lden		55.1

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	52.3
LAeq,nuit	23-06 h	46.2
LDN		53.8


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

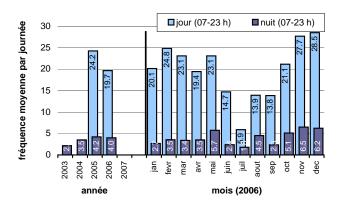
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

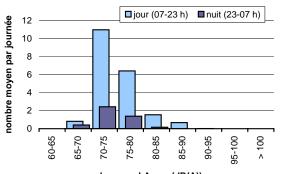
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.8	0.4	1.2
70-75	11.0	2.4	13.4
75-80	6.4	1.4	7.8
80-85	1.6	0.2	1.7
85-90	0.7	0.0	0.7
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	20.5	4.4	24.9

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	19.7
nxLAmax>70, nuit	23-07 h	4.0

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

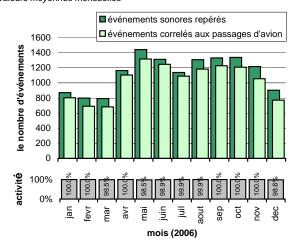
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.5%	99.7%	99.6%
le nombre total des événements sonores repérés	11266	2345	13611
le nombre des événements correlés aux passages d'avion	10216	2163	12379
rapport [%] (taux de corrélation)	90.7%	92.2%	90.9%

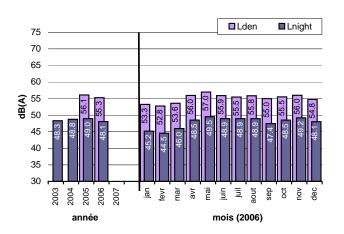
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	51.9
Levening	19-23 h	49.2
Lnight	23-07 h	48.1
Lden		55.3

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	51.5
LAeq,nuit	23-06 h	46.3
LDN		53.5


Evolution du nombre des événements sonores

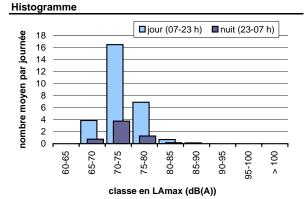
valeurs moyennes mensuelles

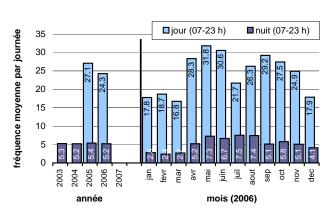
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)


Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	3.9	0.7	4.6
70-75	16.5	3.8	20.2
75-80	6.9	1.3	8.2
80-85	0.7	0.2	0.9
85-90	0.1	0.0	0.1
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	28.1	5.9	34.1

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	24.3
nxLAmax>70, nuit	23-07 h	5.2

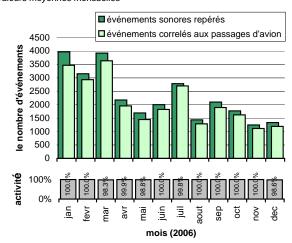
Evolution de la fréquence de dépassement nxLAmax>70

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.5%	99.7%	99.6%
le nombre total des événements sonores repérés	24912	2671	27583
le nombre des événements correlés aux passages d'avion	22607	2478	25085
rapport [%] (taux de corrélation)	90.7%	92.8%	90.9%

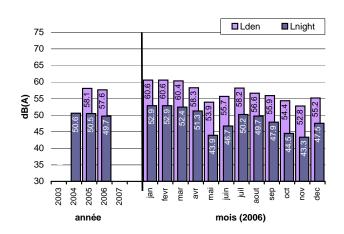
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	54.6
Levening	19-23 h	53.6
Lnight	23-07 h	49.7
Lden		57.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	54.3
LAeq,nuit	23-06 h	49.2
LDN		56.4


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

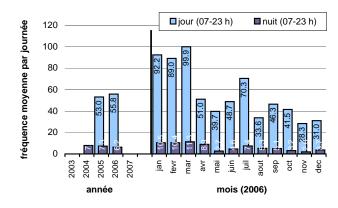
Evolution des indicateurs Lden en Lnight

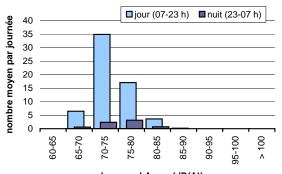
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			nombre moyen par journée		
LAmax	jour	nuit	journée			
dB(A)	07-23 h	23-07 h	24h			
60-65	0.0	0.0	0.0			
65-70	6.5	0.6	7.0			
70-75	34.9	2.4	37.2			
75-80	17.1	3.1	20.2			
80-85	3.6	0.7	4.3			
85-90	0.2	0.0	0.2			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	62.2	6.8	69.0			


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	55.8
nxLAmax>70, nuit	23-07 h	6.2

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

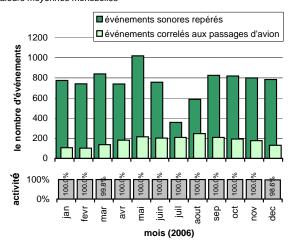
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	100.0%	99.7%	99.9%
le nombre total des événements sonores repérés	7890	1150	9040
le nombre des événements correlés aux passages d'avion	1235	872	2107
rapport [%] (taux de corrélation)	15.7%	75.8%	23.3%

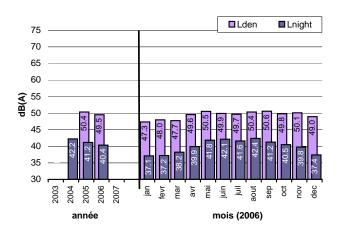
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	47.2
Levening	19-23 h	47.1
Lnight	23-07 h	40.4
Lden		49.5

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	46.9
LAeq,nuit	23-06 h	40.4
LDN		48.3

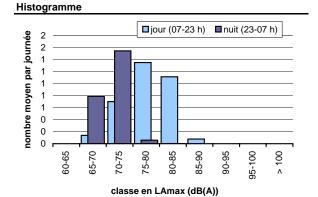

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

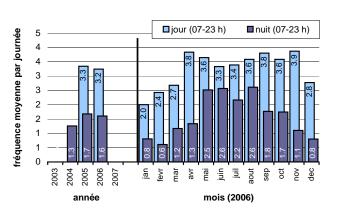
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			nombre moyen par journée	
LAmax	jour	nuit	journée		
dB(A)	07-23 h	23-07 h	24h		
60-65	0.0	0.0	0.0		
65-70	0.1	0.8	0.9		
70-75	0.7	1.5	2.2		
75-80	1.4	0.1	1.4		
80-85	1.1	0.0	1.1		
85-90	0.1	0.0	0.1		
90-95	0.0	0.0	0.0		
95-100	0.0	0.0	0.0		
> 100	0.0	0.0	0.0		
Totaal	3.4	2.4	5.8		

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	3.2
nxLAmax>70, nuit	23-07 h	1.6

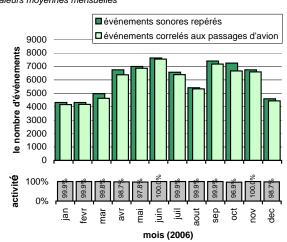
Evolution de la fréc	juence de dépas	sement nxLAmax>70)

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.6%	99.0%	99.3%
le nombre total des événements sonores repérés	65057	7895	72952
le nombre des événements correlés aux passages d'avion	62764	7561	70325
rapport [%] (taux de corrélation)	96.5%	95.8%	96.4%

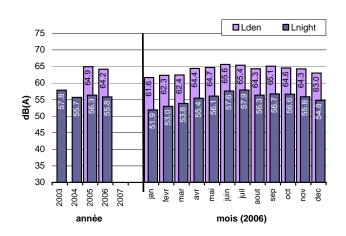
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	61.6
Levening	19-23 h	60.6
Lnight	23-07 h	55.8
Lden		64.2

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	61.4
LAeq,nuit	23-06 h	53.0
LDN		61.9


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

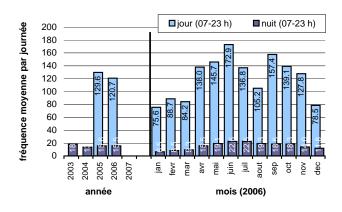
Evolution des indicateurs Lden en Lnight

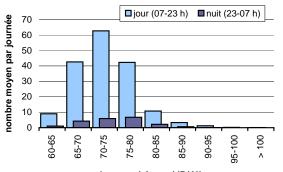
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	journée		
dB(A)	07-23 h	23-07 h	24h	
60-65	9.0	1.0	10.0	
65-70	42.6	4.3	47.1	
70-75	62.7	5.9	68.8	
75-80	42.4	6.7	49.2	
80-85	10.8	2.2	13.0	
85-90	3.3	0.6	3.9	
90-95	1.3	0.1	1.4	
95-100	0.2	0.0	0.2	
> 100	0.1	0.0	0.1	
Totaal	172.3	20.8	193.6	


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	120.7
nxLAmax>70, nuit	23-07 h	15.5

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

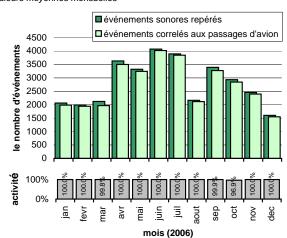
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.7%	99.6%	99.7%
le nombre total des événements sonores repérés	29771	3852	33623
le nombre des événements correlés aux passages d'avion	28932	3728	32660
rapport [%] (taux de corrélation)	97.2%	96.8%	97.1%

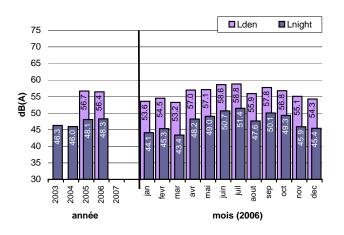
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lden	*	56.4
Lnight	23-07 h	48.3
Levening	19-23 h	52.8
Lday	07-19 h	53.7

tranches horaires d'après des critères opérationnels

and the control of th					
LAeq,jour	06-23 h	53.7			
LAeq,nuit	23-06 h	39.7			
LDN		52.9			


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

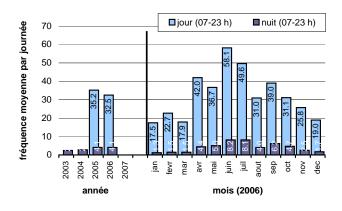
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

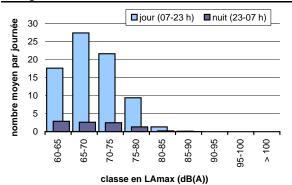
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée				nombre moyen par j	
LAmax	jour nuit journée					
dB(A)	07-23 h	23-07 h	24h			
60-65	17.6	2.9	20.5			
65-70	27.4	2.6	30.1			
70-75	21.6	2.5	24.1			
75-80	9.4	1.3	10.8			
80-85	1.3	0.2	1.6			
85-90	0.1	0.0	0.2			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	77.6	9.6	87.2			

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	32.5
nxLAmax>70, nuit	23-07 h	4.1

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

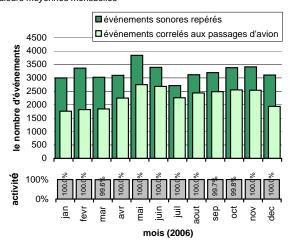
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	34672	3941	38613
le nombre des événements correlés aux passages d'avion	24235	3073	27308
rapport [%] (taux de corrélation)	69.9%	78.0%	70.7%

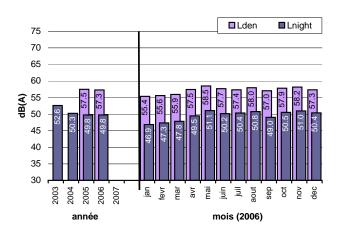
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	54.1
Levening	19-23 h	52.5
Lnight	23-07 h	49.8
Lden		57.3

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	53.8
LAeq,nuit	23-06 h	48.3
LDN		55.7


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

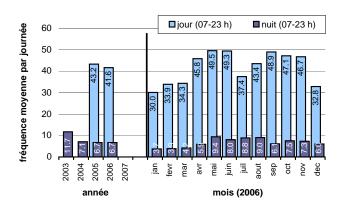
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

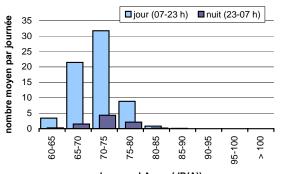
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			nombre moyen par jou	
LAmax	jour	jour nuit journée			
dB(A)	07-23 h	23-07 h	24h		
60-65	3.4	0.3	3.7		
65-70	21.4	1.5	22.9		
70-75	31.8	4.3	36.1		
75-80	8.9	2.1	11.0		
80-85	0.8	0.2	1.0		
85-90	0.1	0.0	0.1		
90-95	0.0	0.0	0.0		
95-100	0.0	0.0	0.0		
> 100	0.0	0.0	0.0		
Totaal	66.4	8.4	74.9		

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	41.6
nxLAmax>70, nuit	23-07 h	6.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

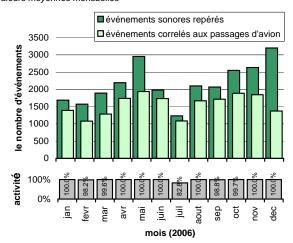
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.3%	98.2%	98.3%
le nombre total des événements sonores repérés	22683	3379	26062
le nombre des événements correlés aux passages d'avion	16407	2329	18736
rapport [%] (taux de corrélation)	72.3%	68.9%	71.9%

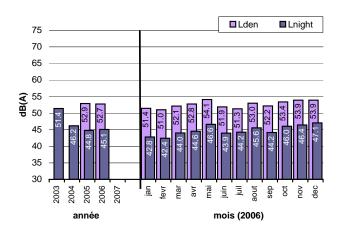
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	49.3
Levening	19-23 h	48.5
Lnight	23-07 h	45.1
Lden		52.7

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	49.1
LAeq,nuit	23-06 h	44.1
LDN		51.2


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

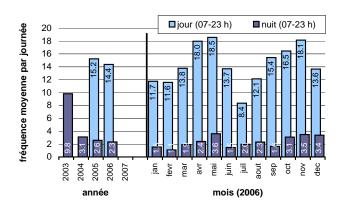
Evolution des indicateurs Lden en Lnight

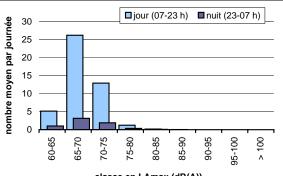
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			nombre moyen par journée		
LAmax	jour	jour nuit journée				
dB(A)	07-23 h	23-07 h	24h			
60-65	5.1	1.0	6.2			
65-70	26.2	3.1	29.4			
70-75	12.9	1.9	14.8			
75-80	1.2	0.4	1.6			
80-85	0.2	0.1	0.2			
85-90	0.0	0.0	0.0			
90-95	0.0	0.0	0.0			
95-100	0.0	0.0	0.0			
> 100	0.0	0.0	0.0			
Totaal	45.7	6.5	52.2			


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	14.4
nxLAmax>70, nuit	23-07 h	2.3

valeurs moyennes mensuelles et annuelles

Evolution de la fréquence de dépassement nxLAmax>70

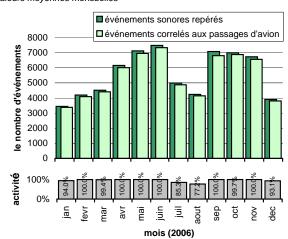
classe en LAmax (dB(A))

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	95.7%	95.6%	95.6%
le nombre total des événements sonores repérés	58912	7926	66838
le nombre des événements correlés aux passages d'avion	57606	7621	65227
rapport [%] (taux de corrélation)	97.8%	96.2%	97.6%

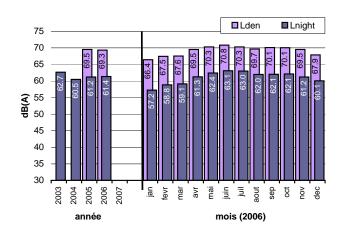
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	66.7
Levening	19-23 h	65.2
Lnight	23-07 h	61.4
Lden		69.3

tranches horaires d'après des critères opérationnels

•		_
LAeq,jour	06-23 h	66.4
LAeq,nuit	23-06 h	58.4
LDN		67.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

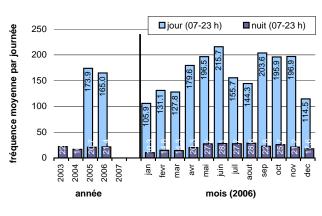
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

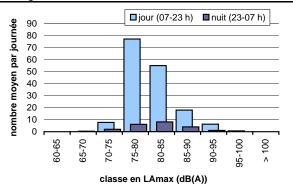
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.0	0.0	0.0
65-70	0.0	0.4	0.4
70-75	7.7	2.0	9.7
75-80	77.2	6.2	83.4
80-85	55.1	8.1	63.2
85-90	18.0	4.1	22.1
90-95	6.3	1.0	7.3
95-100	0.7	0.0	0.8
> 100	0.0	0.0	0.0
Totaal	165.0	21.8	186.9

La fréquence de dépassement nxLAmax>70


valeurs moyennes mensuelles et annuelles

nxLAmax>70, jour	07-23 h	165.0
nxLAmax>70, nuit	23-07 h	21.4

Evolution de la fréquence de dépassement nxLAmax>70

Histogramme

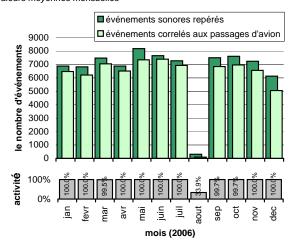
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	94.4%	94.2%	94.3%
le nombre total des événements sonores repérés	73570	6343	79913
le nombre des événements correlés aux passages d'avion	67953	5447	73400
rapport [%] (taux de corrélation)	92.4%	85.9%	91.8%

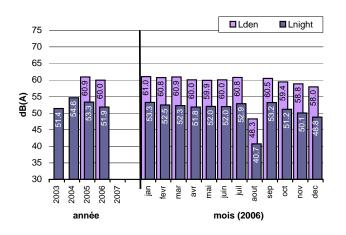
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	57.2
Levening	19-23 h	56.3
Lnight	23-07 h	51.9
Lden		60.0

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	56.8
LAeq,nuit	23-06 h	51.6
LDN		58.8

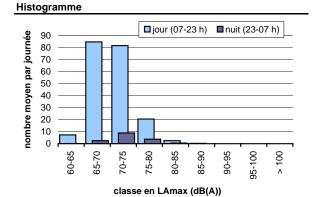

Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

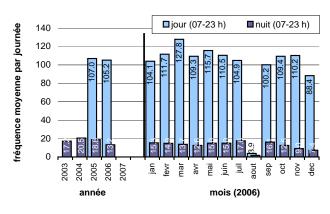
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax


sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée			nombre moyen par jourr	
LAmax	jour	nuit	journée		
dB(A)	07-23 h	23-07 h	24h		
60-65	7.3	0.1	7.4		
65-70	84.8	2.6	87.5		
70-75	81.8	9.0	90.8		
75-80	20.5	3.7	24.2		
80-85	2.6	0.5	3.1		
85-90	0.3	0.0	0.3		
90-95	0.0	0.0	0.0		
95-100	0.0	0.0	0.0		
> 100	0.0	0.0	0.0		
Totaal	197.3	15.8	213.3		


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	105.2
nxLAmax>70, nuit	23-07 h	13.2

nxLamax>70, jour	07-2311	105.2
nxLAmax>70, nuit	23-07 h	13.2
		,

Evolution de la fréquence de dépassement nxLAmax>70

RESULTATS DETAILLEES DES MESURES

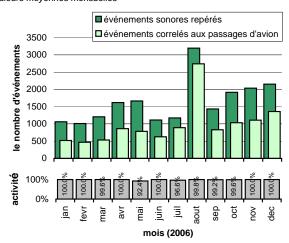
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	98.9%	98.9%	98.9%
le nombre total des événements sonores repérés	16209	3366	19575
le nombre des événements correlés aux passages d'avion	9039	2719	11758
rapport [%] (taux de corrélation)	55.8%	80.8%	60.1%

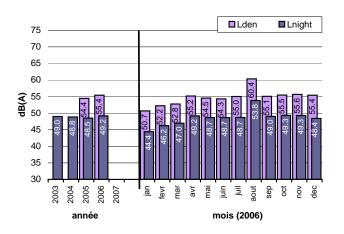
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	49.9
Levening	19-23 h	46.7
Lnight	23-07 h	49.2
Lden		55.4

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	49.6
LAeq,nuit	23-06 h	48.2
LDN		54.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

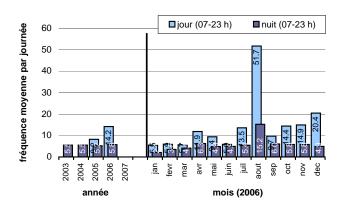
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

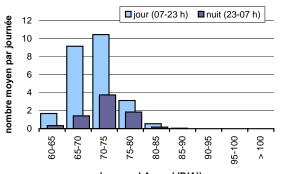
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	nuit	journée	
dB(A)	07-23 h	23-07 h	24h	
60-65	1.7	0.3	2.0	
65-70	9.2	1.4	10.6	
70-75	10.5	3.7	14.2	
75-80	3.1	1.9	5.0	
80-85	0.5	0.2	0.7	
85-90	0.1	0.0	0.1	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	25.0	7.5	32.6	

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	14.2
nxLAmax>70, nuit	23-07 h	5.8

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

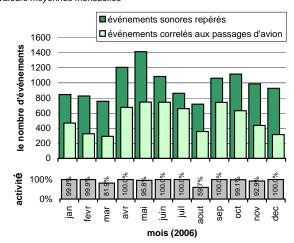
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	94.1%	93.9%	94.0%
le nombre total des événements sonores repérés	10205	1602	11807
le nombre des événements correlés aux passages d'avion	5487	905	6392
rapport [%] (taux de corrélation)	53.8%	56.5%	54.1%

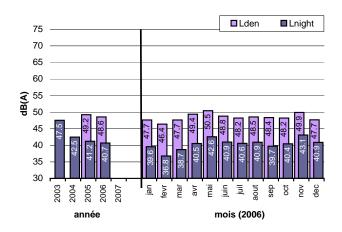
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	46.1
Levening	19-23 h	43.8
Lnight	23-07 h	40.7
Lden		48.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	45.6
LAeq,nuit	23-06 h	40.0
LDN		47.4


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

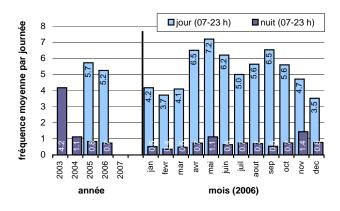
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée			
LAmax	jour	nuit	journée	
dB(A)	07-23 h	23-07 h	24h	
60-65	2.4	0.5	2.9	
65-70	8.3	1.4	9.7	
70-75	4.2	0.6	4.8	
75-80	0.9	0.1	1.0	
80-85	0.1	0.0	0.2	
85-90	0.0	0.0	0.0	
90-95	0.0	0.0	0.0	
95-100	0.0	0.0	0.0	
> 100	0.0	0.0	0.0	
Totaal	16.0	2.6	18.6	

La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	5.2
nxLAmax>70, nuit	23-07 h	0.7

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

· -

Surveillance du bruit - Brussels Airport Rapport annuel 2006

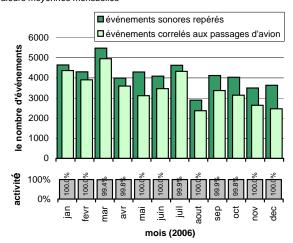
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	45414	4161	49575
le nombre des événements correlés aux passages d'avion	38186	3507	41693
rapport [%] (taux de corrélation)	84.1%	84.3%	84.1%

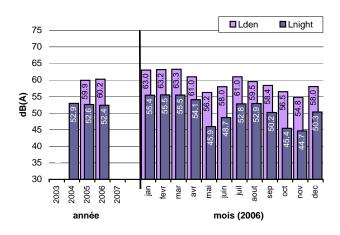
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	57.0
Levening	19-23 h	56.3
Lnight	23-07 h	52.4
Lden		60.2

tranches horaires d'après des critères opérationnels

		•
LAeq,jour	06-23 h	56.7
LAeq,nuit	23-06 h	52.1
LDN		59.1


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

Evolution des indicateurs Lden en Lnight

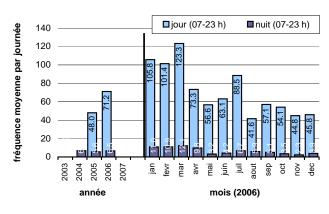
valeurs moyennes mensuelles et annuelles

Analyse de l'indice acoustique LAmax

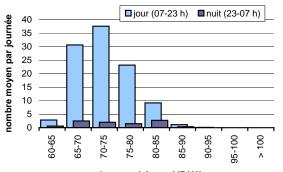
sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax

classe	nombre moyen par journée		
LAmax	jour nuit journée		
dB(A)	07-23 h	23-07 h	24h
60-65	2.9	0.6	3.5
65-70	30.6	2.5	33.1
70-75	37.6	2.0	39.6
75-80	23.1	1.5	24.6
80-85	9.2	2.7	11.9
85-90	1.1	0.4	1.5
90-95	0.1	0.0	0.1
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	104.7	9.6	114.3


La fréquence de dépassement nxLAmax>70

nxLAmax>70, jour	07-23 h	71.2
nxLAmax>70, nuit	23-07 h	6.5


Evolution de la fréquence de dépassement nxLAmax>70

11 04 15

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

RESULTATS DETAILLEES DES MESURES

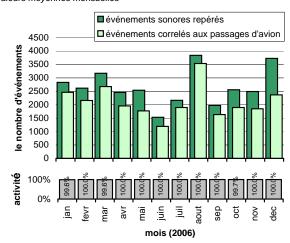
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.9%	99.9%	99.9%
le nombre total des événements sonores repérés	26689	5197	31886
le nombre des événements correlés aux passages d'avion	20844	4538	25382
rapport [%] (taux de corrélation)	78.1%	87.3%	79.6%

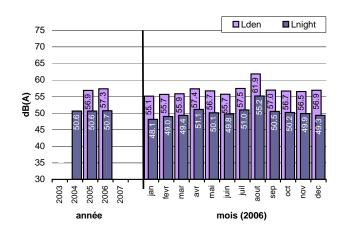
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	52.8
Levening	19-23 h	50.0
Lnight	23-07 h	50.7
Lden		57.3

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	52.5
LAeq,nuit	23-06 h	49.6
LDN		55.9


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

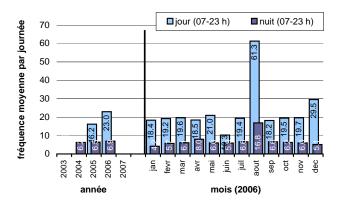
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

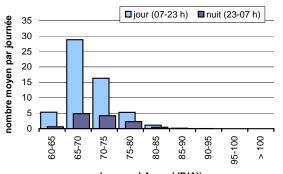
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour nuit journ		
dB(A)	07-23 h	23-07 h	24h
60-65	5.4	0.6	6.0
65-70	28.8	4.9	33.7
70-75	16.3	4.2	20.5
75-80	5.3	2.3	7.5
80-85	1.1	0.5	1.6
85-90	0.2	0.0	0.2
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	57.2	12.4	69.6

La fréquence de dépassement nxLAmax>70


nxLAmax>70, jour	07-23 h	23.0
nxLAmax>70, nuit	23-07 h	6.9

Evolution de la fréquence de dépassement nxLAmax>70

valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

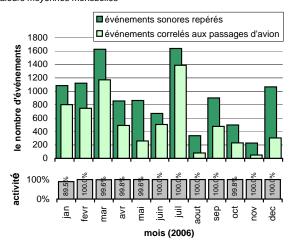
Données générales

totals annuels

	jour 07-23 h	nuit 23-07 h	24h
le taux d'activité en 2006 [%]	99.0%	99.0%	99.0%
le nombre total des événements sonores repérés	9186	1709	10895
le nombre des événements correlés aux passages d'avion	5260	1242	6502
rapport [%] (taux de corrélation)	57.3%	72.7%	59.7%

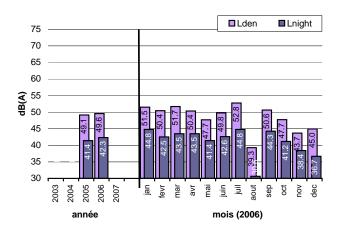
Les niveaux équivalents LAeq

tranches horaires d'après la directive 2002/49/CE


Lday	07-19 h	46.0
Levening	19-23 h	44.0
Lnight	23-07 h	42.3
Lden		49.6

tranches horaires d'après des critères opérationnels

LAeq,jour	06-23 h	45.5
LAeq,nuit	23-06 h	42.0
LDN		48.6


Evolution du nombre des événements sonores

valeurs moyennes mensuelles

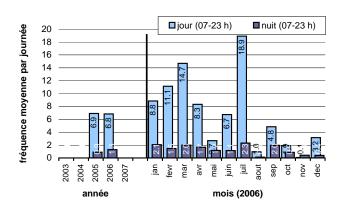
Evolution des indicateurs Lden en Lnight

valeurs moyennes mensuelles et annuelles

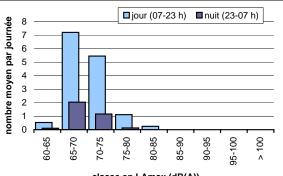
Analyse de l'indice acoustique LAmax

sur base de la répartition annuelle moyenne des événements sonores correlés aux passages d'avion (valuers moyennes par journée)

Distribution rélative par classe de 5 dB sur base de LAmax


classe	nombre moyen par journée		
LAmax	jour	nuit	journée
dB(A)	07-23 h	23-07 h	24h
60-65	0.5	0.1	0.6
65-70	7.2	2.0	9.2
70-75	5.5	1.2	6.6
75-80	1.1	0.1	1.2
80-85	0.2	0.0	0.2
85-90	0.0	0.0	0.0
90-95	0.0	0.0	0.0
95-100	0.0	0.0	0.0
> 100	0.0	0.0	0.0
Totaal	14.6	3.4	18.0

La fréquence de dépassement nxLAmax>70


nyl Amoys 70 jour	07-23 h	6.8
nxLAmax>70, jour	07-2311	0.0
nxLAmax>70, nuit	23-07 h	1.3

Evolution de la fréquence de dépassement nxLAmax>70

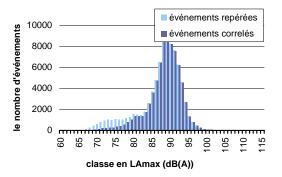
valeurs moyennes mensuelles et annuelles

Histogramme

classe en LAmax (dB(A))

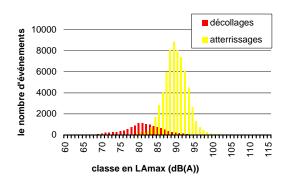
Surveillance du bruit - Brussels Airport Rapport annuel 2006

Surveillance du bruit – Brussels Airport

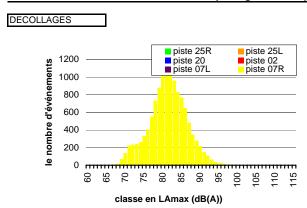

Rapport annuel 2006

Annexe D

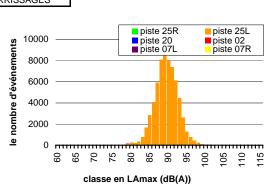
NMT 2 KORTENBERG


Distribution des événements sonores

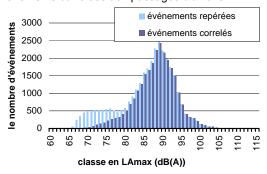
rapport des événements repérées et des événements correlées aux passages d'avions



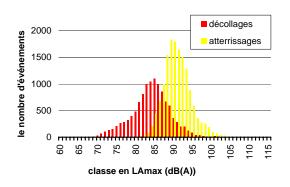
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

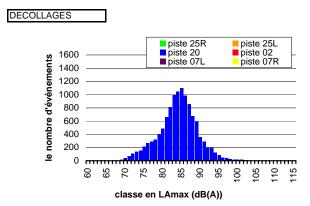
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

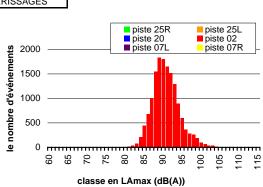

ATTERRISSAGES

NMT 4 NOSSEGEM


Distribution des événements sonores

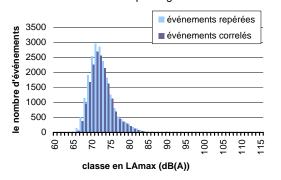
rapport des événements repérées et des événements correlées aux passages d'avions



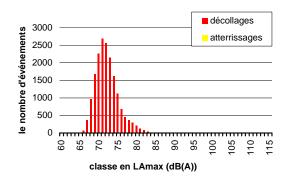

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

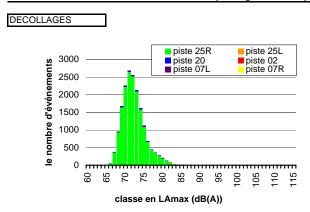
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



NMT 6 EVERE


Distribution des événements sonores

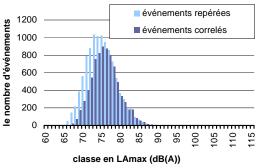
rapport des événements repérées et des événements correlées aux passages d'avions



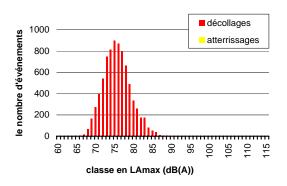
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

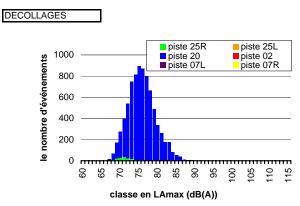
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 7 STERREBEEK


Distribution des événements sonores

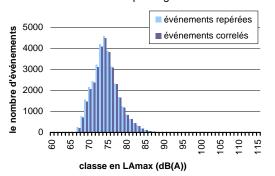
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

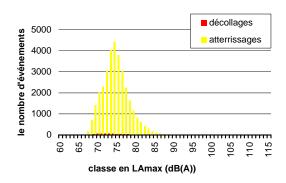
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

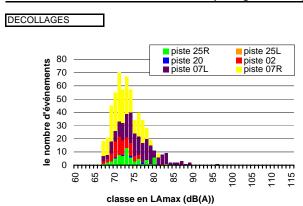


ATTERRISSAGES

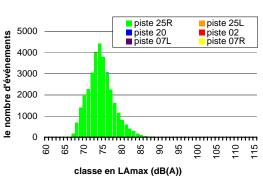
NMT 8 KAMPENHOUT


Distribution des événements sonores

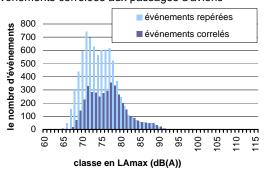
rapport des événements repérées et des événements correlées aux passages d'avions



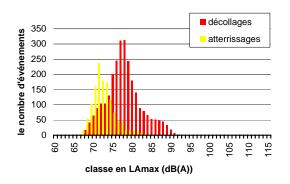
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

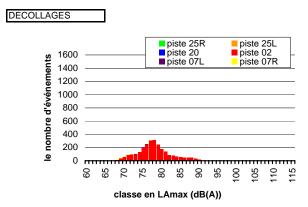
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

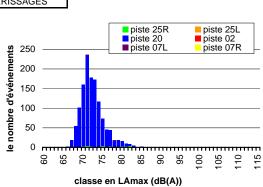
NMT 9 PERK


Distribution des événements sonores

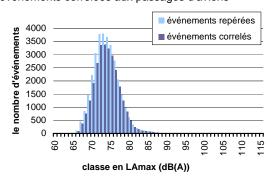
rapport des événements repérées et des événements correlées aux passages d'avions



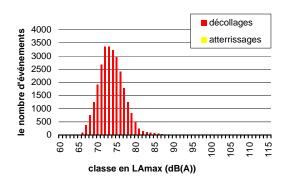
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

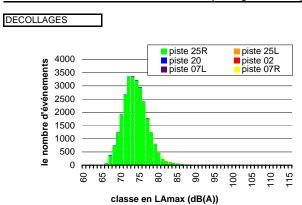
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



N.O. HEEMBEEK **NMT**


Distribution des événements sonores

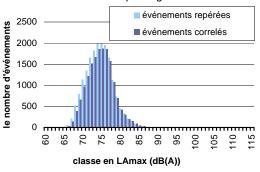
rapport des événements repérées et des événements correlées aux passages d'avions



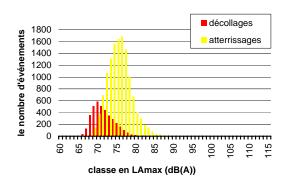
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

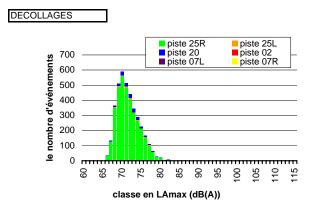
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

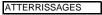

ATTERRISSAGES

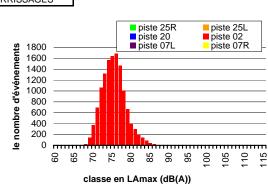
NMT WOLUWE-ST. PIERRE


Distribution des événements sonores

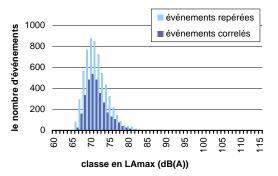
rapport des événements repérées et des événements correlées aux passages d'avions



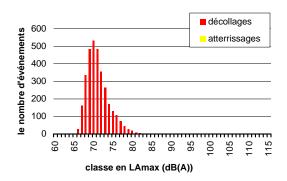

Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

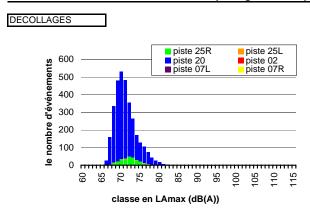
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



NMT 12 DUISBURG


Distribution des événements sonores

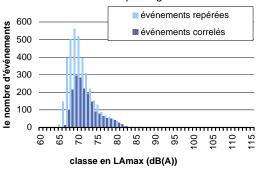
rapport des événements repérées et des événements correlées aux passages d'avions



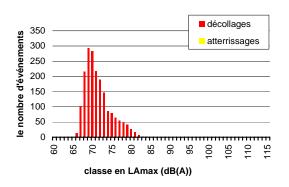
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

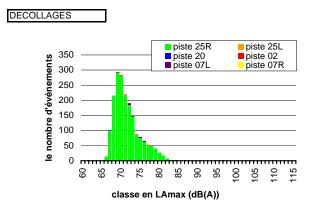
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 13 GRIMBERGEN


Distribution des événements sonores

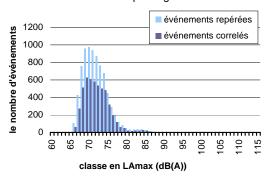
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

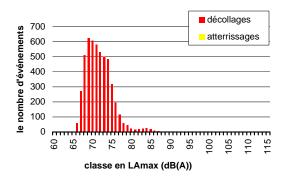
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

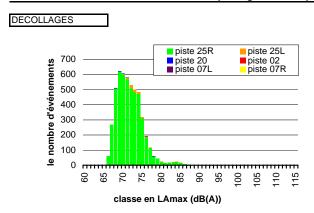


ATTERRISSAGES

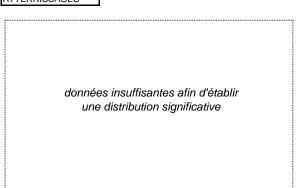
NMT 14 WEMMEL


Distribution des événements sonores

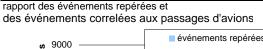
rapport des événements repérées et des événements correlées aux passages d'avions

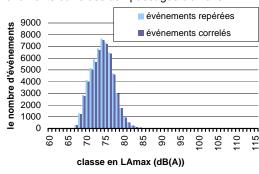


Distribution des événements correlés aux passages d'avion

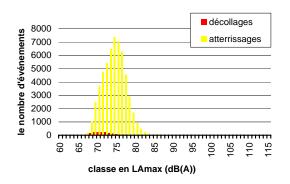

distribution par mouvement (décollage/atterrissage)

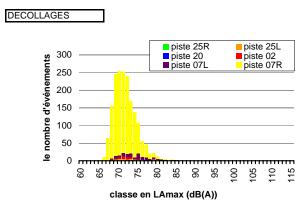
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

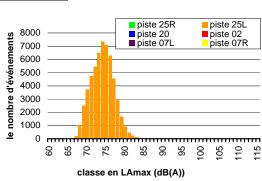



ATTERRISSAGES

NMT 16 VELTEM

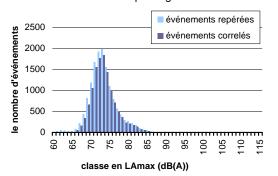

Distribution des événements sonores



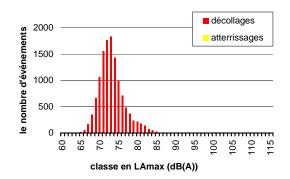

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

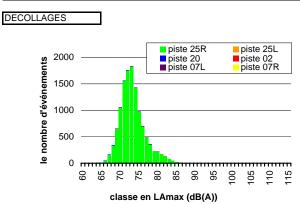
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



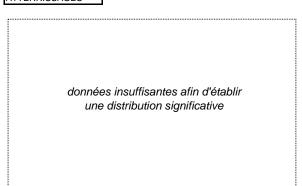
NMT 19 VILVOORDE


Distribution des événements sonores

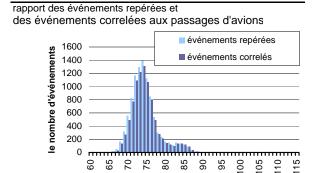
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

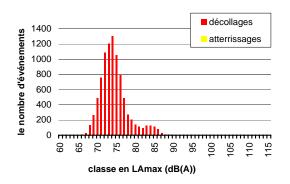

distribution par mouvement (décollage/atterrissage)

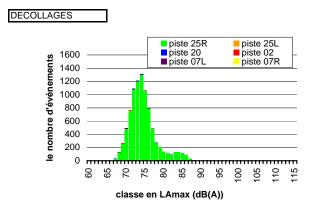
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



ATTERRISSAGES

NMT 20 MACHELEN

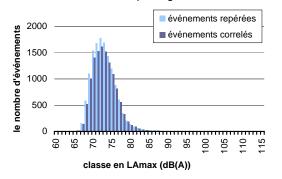

Distribution des événements sonores


classe en LAmax (dB(A))

Distribution des événements correlés aux passages d'avion

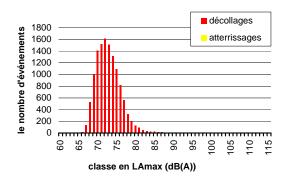
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

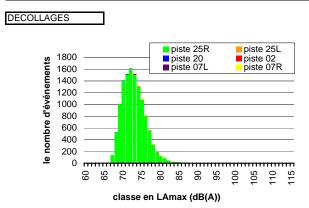


ATTERRISSAGES

NMT 21 STROMBEEK-BEVER


Distribution des événements sonores

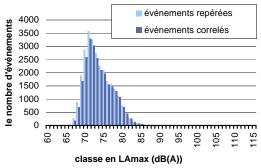
rapport des événements repérées et des événements correlées aux passages d'avions



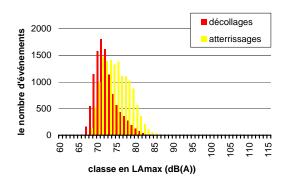
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

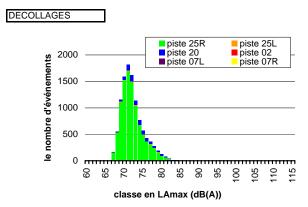
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

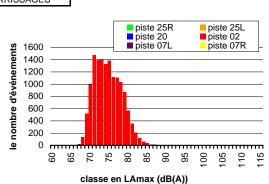
NMT 24 KRAAINEM


Distribution des événements sonores

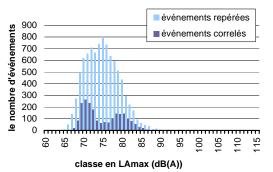
rapport des événements repérées et des événements correlées aux passages d'avions



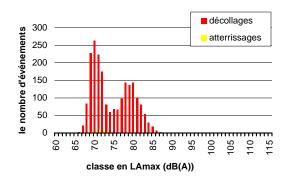
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

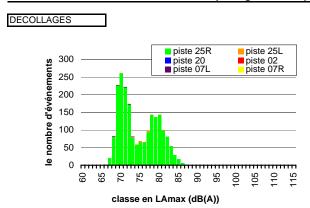
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



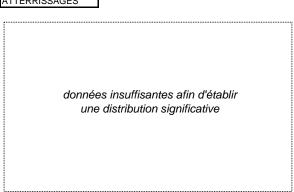
NMT 26 BRUXELLES


Distribution des événements sonores

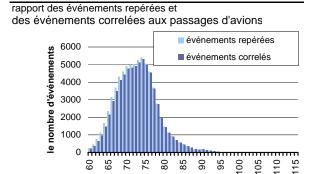
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

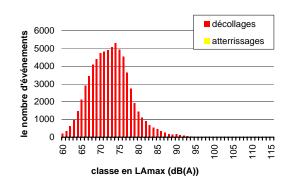

distribution par mouvement (décollage/atterrissage)

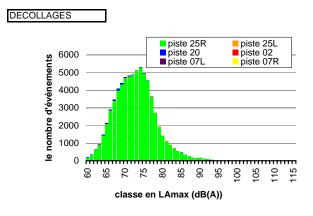
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

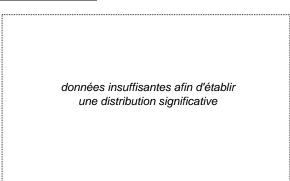


ATTERRISSAGES

NMT 30 HAREN

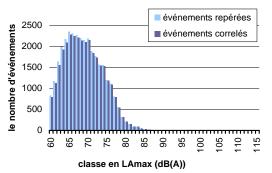

Distribution des événements sonores


classe en LAmax (dB(A))

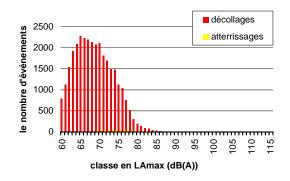

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

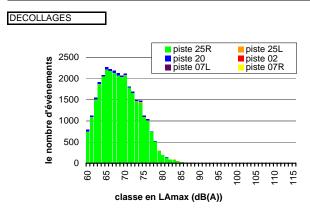
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



NMT 31 EVERE


Distribution des événements sonores

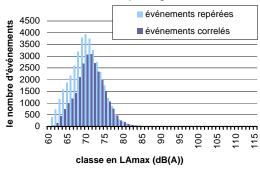
rapport des événements repérées et des événements correlées aux passages d'avions



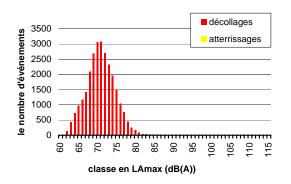
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

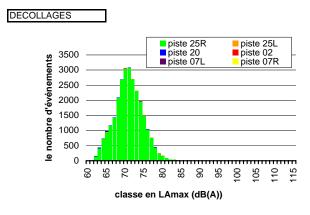
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 40 KONINGSLO


Distribution des événements sonores

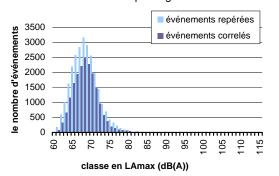
rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

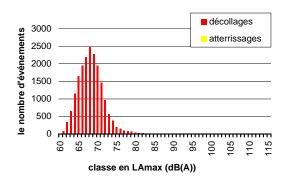
distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

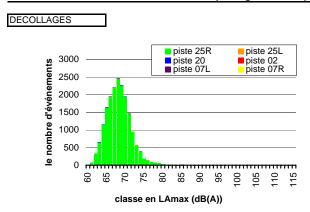


ATTERRISSAGES

NMT 41 GRIMBERGEN


Distribution des événements sonores

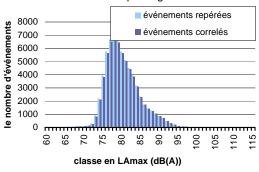
rapport des événements repérées et des événements correlées aux passages d'avions



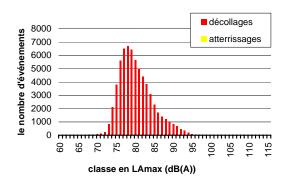
Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

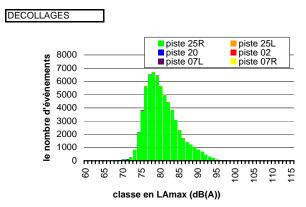
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

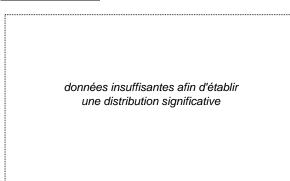

ATTERRISSAGES

NMT 42 DIEGEM


Distribution des événements sonores

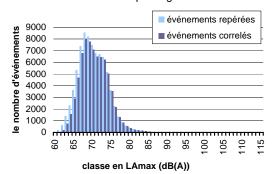
rapport des événements repérées et des événements correlées aux passages d'avions



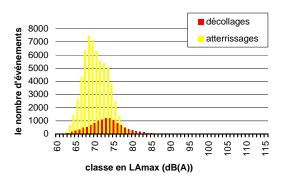

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

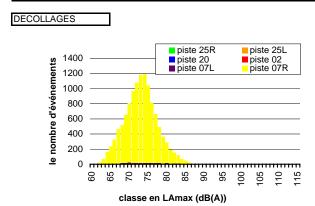
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



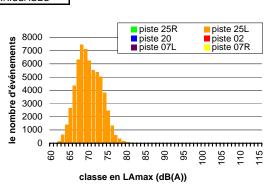
NMT 43 ERPS-KWERPS


Distribution des événements sonores

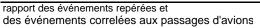
rapport des événements repérées et des événements correlées aux passages d'avions

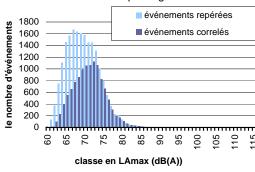


Distribution des événements correlés aux passages d'avion

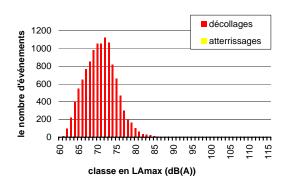

distribution par mouvement (décollage/atterrissage)

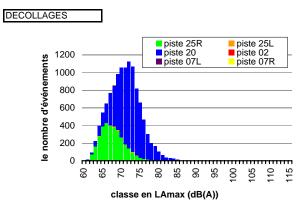
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé




ATTERRISSAGES

NMT 44 TERVUREN

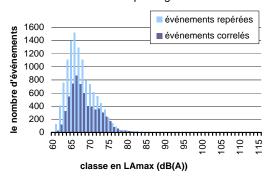

Distribution des événements sonores



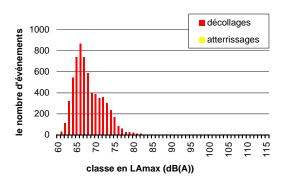

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

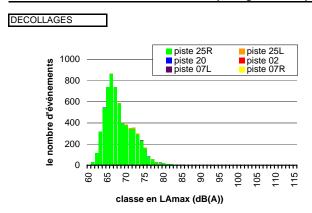
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



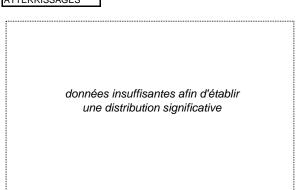
NMT 45 MEISE


Distribution des événements sonores

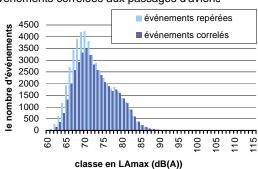
rapport des événements repérées et des événements correlées aux passages d'avions



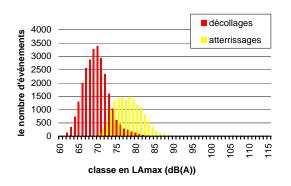
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

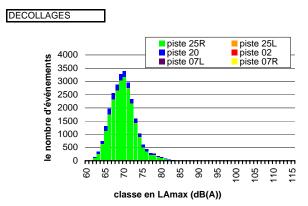
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

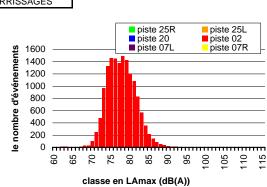

ATTERRISSAGES

NMT 46 WEZEMBEEK-OPPEM


Distribution des événements sonores

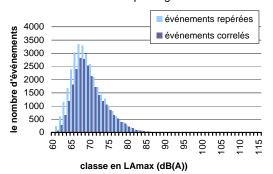
rapport des événements repérées et des événements correlées aux passages d'avions



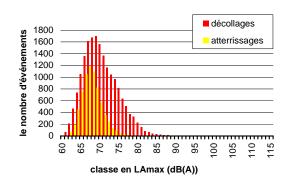

Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

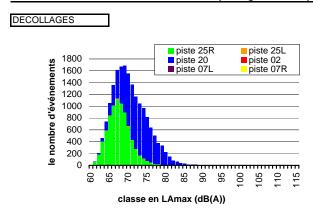
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé



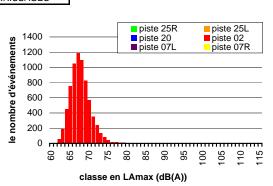
NMT 47 WEZEMBEEK-OPPEM


Distribution des événements sonores

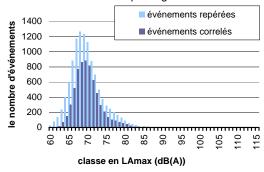
rapport des événements repérées et des événements correlées aux passages d'avions



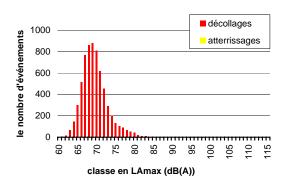
Distribution des événements correlés aux passages d'avion


distribution par mouvement (décollage/atterrissage)

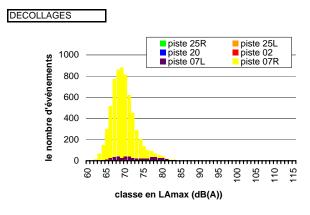
Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé


ATTERRISSAGES

NMT 48 BERTEM


Distribution des événements sonores

rapport des événements repérées et des événements correlées aux passages d'avions



Distribution des événements correlés aux passages d'avion

distribution par mouvement (décollage/atterrissage)

Distribution des événements correlés aux passages d'avion par mouvement et piste utilisé

ATTERRISSAGES

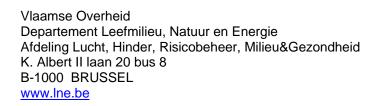
COLOPHON

Ce rapport etait réalisé grâce à la collaboration de:

The Brussels Airport Company n.v./s.a. Luchthaven Brussel Nationaal B-1930 ZAVENTEM www.brusselsairport.be

FOD Mobiliteit en Vervoer:

Direction générale Transport Aérien CCN Vooruitgangstraat 80/5 **B-1030 BRUXELLES** www.mobilit.fgov.be


Ombudsdienst voor de luchthaven Brussel-Nationaal Raketstraat 90 B-1130 BRUSSEL www.airportmediation.be

Belgocontrol Tervuursesteenweg 303 **B-1820 STEENOKKERZEEL** www.belgocontrol.be

Gulledelle 100 **B-1200 BRUXELLES**

