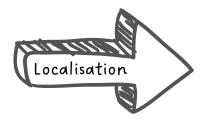


Fiche technique - Réseau Bruxelles-Centre Sainte-Catherine

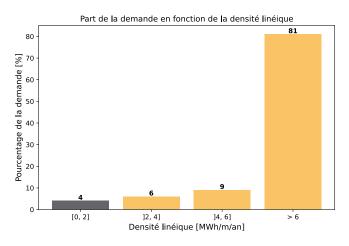


Le réseau étudié dans cette fiche est **fictif**. Il s'agit d'un cas d'étude hypothétique développé de manière arbitraire dans le cadre d'une analyse localisée du potentiel de décarbonation via les **réseaux d'énergie thermique (RET)**. Cette fiche ne présage en rien de l'autorisation des gestionnaires ou propriétaires des sources dans lesquelles les calories seraient prélevées ou de la faisabilité technique de les mettre en œuvre.

1. Contexte

Toutes les hypothèses techniques (coûts, temps de vie des composantes, rendements, etc.) et la présentation détaillée de la méthodologie se trouvent dans la note méthodologique associée à ces fiches.

Localisation


Le réseau étudié se situe dans la commune de **Bruxelles**. Cette commune est dans la liste des communes de plus de 45000 habitants et est en principe soumise à l'obligation d'élaborer un plan local en matière de chaleur et de froid (cfr. Article 25 - <u>Directive (UE) 2023/1791</u>).

Source d'énergie

Dans ce scénario, il y a plusieurs sources d'énergie thermique à savoir la **géothermie fermée** (i.e. sur sondes) et l'**aquathermie** (via le Canal). Seule la géothermie est utilisée pour couvrir la demande en chaleur. L'aquathermie intervient pour assurer le rééquilibrage du sous-sol et de ce fait, la pérennité de la ressource géothermique. Le réseau étudié est un réseau **basse température**.

Statistiques commune de Bruxelles

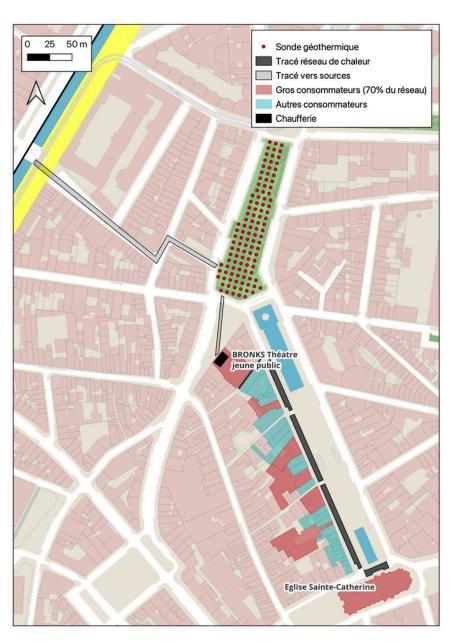
Nombre d'habitants

La commune de Bruxelles est composée de 196.828 habitants (2024) représentant environ 16% des habitants de la Région.

Demande

La commune de Bruxelles représente environ 26% de la demande en chaleur de la Région Bruxelles-Capitale (2021).

Densité linéique


La majorité ce la demande (2021) de la commune se trouve dans des zones à densité linéique favorable pour le développement des RET.

Sources d'énergie thermique renouvelable basse température disponibles dans la commune de Bruxelles

Source	Géothermie	Aquathermie	Riothermie	Chaleur fatale
Disponibilité	✓	√	√	\checkmark
Туре	Fermée & Ouverte	Canal, Senne	STEP et collecteurs	Incinérateur, métro, parking, groupe de froid

2. Réseau d'énergie thermique (RET)

Consommateurs

Favoriser la diversité au niveau des profils des consommateurs. Des profils divers en demande de chaleur et de froid permettent d'équilibrer en partie le réseau.

Limitation

Potentiel de la ressource en géothermie.

Dimensionnement de la chaufferie

Nombre de sondes

114 sondes à 200m de profondeur dans le parc au dessus de la Place Saint-Catherine.

COP (efficacité de la source)

5

Couverture en puissance

100 % de la puissance de la chaufferie provient de la **géothermie fermée**.

Régénération

La régénération se fait à l'aide de l'aquathermie (Canal), à tout moment de l'année qui est pertinent.

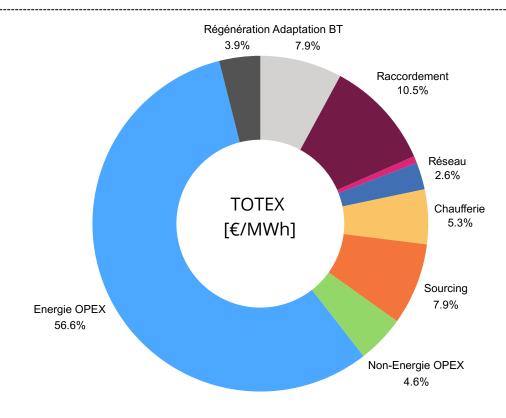
Puissance de la source¹

860 kW

Obtenue en multipliant le nombre de sondes et la puissance d'une sonde.

Puissance totale de la chaufferie - 1,1 MW

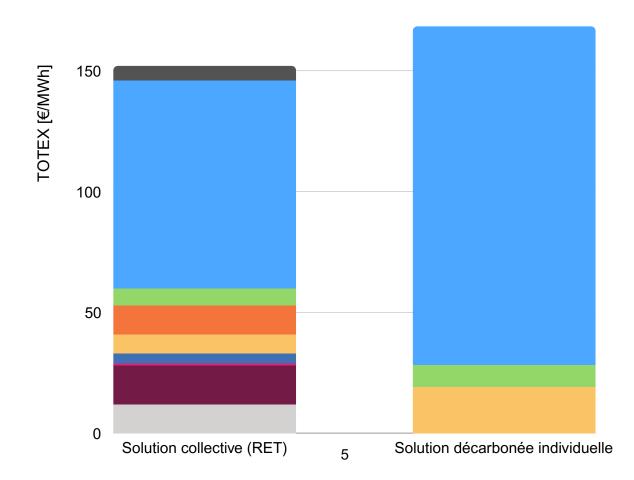
Données techniques du réseau


Donnée	Régime de température	Longueur simple	Puissance	Demande couverte	Densité linéique	# raccordements (1 par parcelle cadastrale)
Valeur	Basse température	350 m	1,1 MW	2,3 GWh/an	6,6 MWh/an/m	30

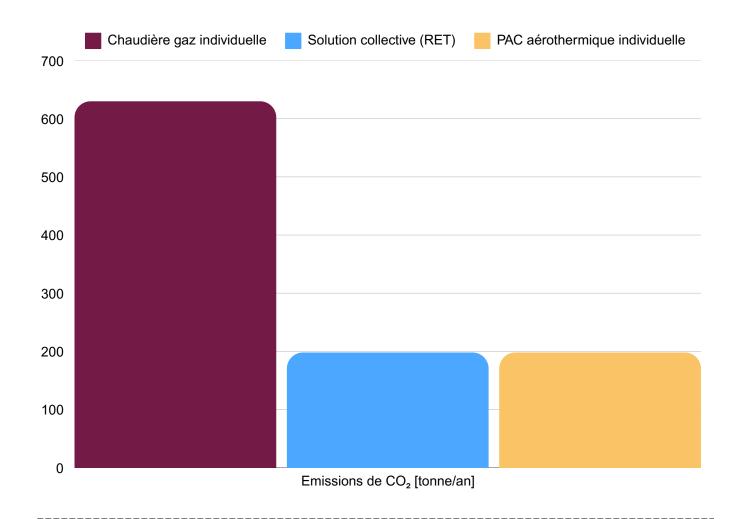
¹ la puissance de la source reflète la puissance extractible alors que la puissance totale de la chaufferie prend en compte le COP de la PAC.

Données financières du réseau

	Type de coût	CAPEX [M€]	OPEX [I	OPEX [M€/an]		TOTEX [€/MWh]	
	Valeur	3,3 M€	0,2 M€/an		152 €/MWh		
CAPEX [k€]	1200 — Ad 1200 — 600 — 400 200	aptation BT Raccordement Pic	quage	OPEX [k€/an]	200 - 150 - 100 -	Non-Energie OPEx	rgie OPEX Régénération
	0 Composante de coût				0	Composant	te de coût



3. Comparaison aux solutions individuelles (dé)carbonées


En termes de coûts hors impact financier pour le renforcement du réseau électrique

Type de coût	CAPEX OPEX [M€] [M€/an]		TOTEX [€/MWh]	Puissance de pointe [MW]
Solution collective (Réseau)	3,3 M€	0,2 M€/an	152 €/MWh	1,1 MW
Solution individuelle décarbonée (PAC aéro)	0,9 M€	0,3 M€/an	168 €/MWh	1,8 MW
	Adaptation BT	Raccordeme		
	Réseau	Chaufferie	Sourcing	
200 Non-	Energie OPEX	Energie OPE	EX Régénérati	on

En termes d'émission de CO₂

La solution collective permet d'éviter 432 tonnes de CO₂ par an par rapport à la solution individuelle carbonée, soit les émissions directes et indirectes d'environ 21 Bruxellois.